Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a\orbr{x=\frac{\pm\sqrt{5}-3}{4}}\)
\(b\hept{\begin{cases}x=5\\y=4\end{cases}}\)
2)\(\Leftrightarrow\left(x^3-x^2y\right)+\left(y^3-xy^2\right)=5\)
\(\Leftrightarrow x^2\left(x-y\right)+y^2\left(y-x\right)=5\)
\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)=5\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)=5\)
TH1\(\hept{\begin{cases}x-y=1\\x^2-y^2=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}\left(N\right)}}\)
TH2\(\hept{\begin{cases}x-y=5\\x^2-y^2=1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)
TH3\(\hept{\begin{cases}x-y=-1\\x^2-y^2=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}\left(N\right)}}\)
TH4\(\hept{\begin{cases}x-y=-5\\x^2-y^2=-1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)
Vậy......
1/ ĐKXĐ: ...
\(\Leftrightarrow x=2016-2015\sqrt{x}-x\)
\(\Leftrightarrow2x+2015\sqrt{x}-2016=0\)
Đặt \(\sqrt{x}=t\ge0\)
\(\Rightarrow2t^2+2015t-2016=0\)
Nghiệm xấu kinh khủng, bạn tự giải
2. ĐKXĐ: ...
\(x^2+4x+4+4y^2-8y+4=4xy+13\)
\(\Leftrightarrow\left(x-2y\right)^2+4\left(x-2y\right)-5=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2y=1\\x-2y=-5< 0\left(l\right)\end{matrix}\right.\) \(\Rightarrow x=2y+1\)
Thay xuống dưới:
\(\sqrt{\frac{\left(x+y\right)\left(x-2y\right)}{x-y}}+\sqrt{x+y}=\frac{2}{\sqrt{\left(x-y\right)\left(x+y\right)}}\)
\(\Leftrightarrow\left(x+y\right)\sqrt{x-2y}+\left(x+y\right)\sqrt{x-y}=2\)
\(\Leftrightarrow3y+1+\left(3y+1\right)\sqrt{y+1}=2\)
\(\Leftrightarrow6y+\left(3y+1\right)\left(\sqrt{y+1}-1\right)=0\)
\(\Leftrightarrow6y+\frac{\left(3y+1\right)y}{\sqrt{y+1}+1}=0\)
\(\Leftrightarrow y\left(6+\frac{3y+1}{\sqrt{y+1}+1}\right)=0\Rightarrow y=0\Rightarrow x=1\)
\(PT\Leftrightarrow xy\left(x+y-1\right)+\left(x+y-1\right)=1\)
\(\Leftrightarrow\left(x+y-1\right)\left(xy+1\right)=1\)
\(\Leftrightarrow\hept{\begin{cases}x+y-1=1\\xy+1=1\end{cases}hoac\hept{\begin{cases}x+y-1=-1\\xy+1=-1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=2\\xy=0\end{cases}hoac\hept{\begin{cases}x+y=0\\xy=-2\end{cases}}}\)
Đến đây thì đơn giản rồi nhé :)))
Phương trình tương đương: \(\left(x+y\right)\left(x^2y^2+1\right)=xy+2\)
\(\Leftrightarrow x+y=\frac{xu+2}{x^2y^2+1}\)
\(\Rightarrow\left(xy+2\right)⋮\left(x^2y^2+1\right)\Rightarrow\left(x^2y^2-4\right)⋮\left(x^2y^2+1\right)\)
\(\Rightarrow\left(x^2y^2+1-5\right)⋮\left(x^2y^2+1\right)\Rightarrow5⋮\left(x^2y^2+1\right)\)
\(\Rightarrow x^2y^2+1\in\left\{1;5\right\}\Rightarrow x^2y^2\in\left\{0;4\right\}\Rightarrow xy\in\left\{-2;0;2\right\}\)
- \(xy=0\Rightarrow xy=2\Rightarrow\left(x;y\right)\in\left\{\left(0;2\right);\left(2;0\right)\right\}\)
- \(xy-2\Rightarrow x+y=0\Rightarrow y=-x\Rightarrow x^2=2\left(ktm\right)\)
- \(xy=2\Rightarrow x+y=\frac{4}{5}\left(ktm\right)\)
Vậy: \(\left(x,y\right)\in\left\{\left(0;2\right);\left(2;0\right)\right\}\)
Ta co :(x+y)^2=(x-1)(y-1)
X^2+2xy+y^2=xy-x-y+1
2x^2+2xy+2y^2+x+y-2=0
(x^2+2xy+y^2)+(x^2+2x+1)+(y^2+2y+1)=4
(x+y)^2+(x+1)^2+(y+1)^2=4
Do x;y€Z nen (x+y)^2;(x+1)^2;(y+1)^2 la cac so chinh phuong
Suy ra co 3 truong hop
°(x+y)^2=0;(x+1)^2=0;(y+1)^2=4
°(x+y)^2=0;(x+1)^2=4;(y+1)^2=0
°(x+y)^2=4;(x+1)^2=0;(y+1)^2=0
Sau do tu giai ra tim x;y
=> 5x2 + 5xy + 5y2 = 7x + 14y
=> 5x2 + 5xy - 7x + 5y2 - 14y = 0
=> 5x2 + (5y -7).x + (5y2 - 14y) = 0 (*)
Tính \(\Delta\) = (5y - 7)2 - 4.5.(5y2 - 14y) = -75y2 + 210y + 49
Để x nguyên thì \(\Delta\) là số chính phương <=> -75y2 + 210y + 49 = k2 ( với k nguyên)
=> - 3. (25y2 - 2.5y.7 + 49) + 196 = k2
=> -3.(5y - 7)2 + 196 = k2
=> 3.(5y - 7)2 + k2 = 196 => 3. (5y-7)2 \(\le\) 196 => (5y - 7)2 \(\le\) 66 =>-8 \(\le\) 5y - 7 \(\le\) 8
=> -1/5 \(\le\) y \(\le\) 3
y nguyên nên y có thể bằng 0; 1;2;3
Với tưng giá trị của y ta thay vào (*) => x
Các giá trị x; y nguyên tìm được là các giá trị thỏa mãn yêu cầu