\(y=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2016

tìm đk r bình lên

21 tháng 10 2020

2.

Nhân hai vế của phương trình với 6xy:
                   6y+6x+1=xy6y+6x+1=xy
Đưa về phương trình ước số:
      x(y−6)−6(y−6)=37x(y−6)−6(y−6)=37 
⇔(x−6)(y−6)=37⇔(x−6)(y−6)=37
Do vai trò bình đẳng của xx và yy, giả sử xy⩾1x⩾y⩾1, thế thì x−6⩾y−6⩾−5x−6⩾y−6⩾−5.
Chỉ có một trường hợp:
               {−6=37y−6=1⇔{=43y=7{−6=37y−6=1⇔{=43y=7
Đáp số:  (43;7),(7;43)
 

31 tháng 12 2018

ĐKXĐ: x;y > 0

\(pt\Leftrightarrow\sqrt{x+\sqrt{x+\sqrt{x}}}=y^2-x\)(bình phương + chuyển vế)

 Vì \(\hept{\begin{cases}x;y\inℤ\\x;y\ge0\end{cases}\Rightarrow}x;y\inℕ\)

                           \(\Rightarrow y^2-x\inℕ\)(Vì VP > 0 nên VT > 0 mà 2 số này thuộc N nên hiệu của chúng thuộc N)

Đặt \(y^2-x=a\left(a\inℕ\right)\)

Khi đó \(\sqrt{x+\sqrt{x+\sqrt{x}}}=a\)

    \(\Leftrightarrow\sqrt{x+\sqrt{x}}=a^2-x\)(bình phương+chuyển vế)

Tương tự như trên 

Đặt \(a^2-x=b\left(b\inℕ\right)\)

\(\Rightarrow\sqrt{x+\sqrt{x}}=b\)

\(\Leftrightarrow x+\sqrt{x}=b^2\left(1\right)\)

Từ (1) => \(\sqrt{x}\inℕ\)

Ta có: \(\left(1\right)\Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)=b^2\)

Vì \(\sqrt{x}\)và \(\sqrt{x}+1\)là 2 số tự nhiên liên tiếp

Mà b2 là số chính phương

\(\Rightarrow\sqrt{x}=0\)

\(\Rightarrow x=0\)

\(\Rightarrow y=0\)

Vậy pt có nghiệm duy nhất (x;y) = (0;0)

1 tháng 11 2020

Bài 1 :

a) \(x^3-x^2-x-2=0\)

\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)

\(\Leftrightarrow\left(x^3-2x^2\right)+\left(x^2-2x\right)+\left(x-2\right)=0\)

\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)(1)

Vì \(x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

\(\Rightarrow x^2+x+1\ge\frac{3}{4}\forall x\)(2)

Từ (1) và (2) \(\Rightarrow x-2=0\)\(\Leftrightarrow x=2\)

Vậy \(x=2\)

1 tháng 11 2020

Bài 2: 

\(2x^2+y^2-2xy+2y-6x+5=0\)

\(\Leftrightarrow x^2-2xy+y^2-2x+2y+1+x^2-4x+4=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2-2\left(x-y\right)+1+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-y-1\right)^2+\left(x-2\right)^2=0\)(1)

Vì \(\left(x-y-1\right)^2\ge0\forall x,y\)\(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-y-1\right)^2+\left(x-2\right)^2\ge0\forall x,y\)(2)

Từ (1) và (2) \(\Rightarrow\left(x-y-1\right)^2+\left(x-y\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=x-1\\x=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)

Vậy \(x=2\)và \(y=1\)