Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhân hai vế của phương trình với 6xy:
6y+6x+1=xy6y+6x+1=xy
Đưa về phương trình ước số:
x(y−6)−6(y−6)=37x(y−6)−6(y−6)=37
⇔(x−6)(y−6)=37⇔(x−6)(y−6)=37
Do vai trò bình đẳng của xx và yy, giả sử x⩾y⩾1x⩾y⩾1, thế thì x−6⩾y−6⩾−5x−6⩾y−6⩾−5.
Chỉ có một trường hợp:
{−6=37y−6=1⇔{=43y=7{−6=37y−6=1⇔{=43y=7
Đáp số: (43;7),(7;43)
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)
Do vai trò của x,y,z là như nhau nên không mất tính tổng quát, giả sử \(x\ge y\ge z\ge1\)(nguyên dương)
\(\Rightarrow\frac{1}{x}\le\frac{1}{y}\le\frac{1}{z}.\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\le\frac{1}{z}+\frac{1}{z}+\frac{1}{z}=\frac{3}{z}.\)
\(\Rightarrow z\le1\) mà \(z\ge1\)
\(\Rightarrow z=1.\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=2-\frac{1}{1}=1\le\frac{1}{y}+\frac{1}{y}=\frac{2}{y}.\)
\(\Rightarrow y\le2\)mà \(y\ge1\)
\(\Rightarrow y\in\left\{1;2\right\}.\)
*Nếu \(y=1\Rightarrow\frac{1}{x}=1-\frac{1}{1}=0\Rightarrow x=\frac{1}{0}\)(vô lí)
*Nếu \(y=2\Rightarrow\frac{1}{x}=2-\frac{1}{2}=\frac{1}{2}\Rightarrow x=2\)(thỏa mãn)
Vậy \(x=y=2,z=1.\)
\(\dfrac{5}{x}-\dfrac{y}{4}=\dfrac{1}{12}\Leftrightarrow\dfrac{20-xy}{4x}=\dfrac{1}{12}\Leftrightarrow240-12xy=4x\Leftrightarrow240-12xy-4x=0\Leftrightarrow60-3xy-x=0\Leftrightarrow-3xy-x=-60\Leftrightarrow-x\left(3y+1\right)=60\)Đến đây do x,y nguyên nên bạn lập bảng xét ước nhá, lưu ý 3y + 1 chia 3 dư 1 để bớt trường hợp xét nhá.
Vì 105 là số nguyên lẻ nên 2x+5y+1 và 2020lxl+y+x2+x là số lẻ
=> 5y chẵn => y chẵn
Có:x2+x=x(x+1) là số chẵn nên 2020lxl lẻ
=>x=0
Thay x=0 vào phương trình (2x+5y+1)(2020lxl+y+x2+x)=105 ta được:
\(\left(5y+1\right)\left(y+1\right)=105\Leftrightarrow5y^2+6y-104=0\)
Do \(y\in Z\)nên ta tìm ra y=4
Vậy phương trình có nghiệm là \(\left(x;y\right)=\left(0;4\right)\)