K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2018

Ta có: \(x^2-4xy+5y^2-16=0\)

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+y^2=16\)

\(\Leftrightarrow\left(x-2y\right)^2+y^2=16\)

Vì \(x;y\in Z\Rightarrow\left(x-2y\right)^2\in Z;y^2\in Z\)  

    Và \(\left(x-2y\right)^2\ge0,y^2\ge0\)

\(\left(x;y\right)=\left(8;4\right),\left(-8;-4\right),\left(4;0\right),\left(-4;0\right)\)

Ta có các tập nghiệm: \(\left(x;y\right)=\left(8;4\right),\left(-8;-4\right),\left(4;0\right),\left(-4;0\right)\) thì thỏa mãn phương trình

4 tháng 2 2018

PT \(\Leftrightarrow x^2+\left(-4y\right).x+\left(5y^2-16\right)=0\)

Để PT trên có nghiệm \(\Leftrightarrow\Delta=\left(-4y\right)^2-4\left(5y^2-16\right)\ge0\)

\(\Leftrightarrow16y^2-20y^2+64\ge0\Leftrightarrow-4y^2+64\ge0\Leftrightarrow-4y^2\ge-64\)

\(\Leftrightarrow y^2\le16\Rightarrow-4\le y\le4\)

Đến đây xét các giá trị của y là tìm ra x

26 tháng 3 2018

Ta  có : \(x^2-4xy+5y^2-16=0\)

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2-16\right)=0\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(y-4\right)^2=0\)

Mà \(\left(x-2y\right)^2\ge0\forall x:y\)

       \(\left(y-4\right)^2\ge0\forall y\)

Dấu  " = " xảy ra khi :

\(\orbr{\begin{cases}x-2y=0\\y-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2y\\y=4\end{cases}}}\Leftrightarrow\orbr{\begin{cases}x=8\\y=4\end{cases}}\)

Vậy \(\left(x;y\right)=\left(8;4\right)\)

NM
13 tháng 3 2021

a.ta có \(\left(x+3\right)\left(y-7\right)=-21\Rightarrow y-7\in\left\{-3,-1\right\}\) ( do x+3>3 và 0>y-7>-7)

\(\Rightarrow\hept{\begin{cases}y=4\\x=4\end{cases}\text{ hoặc }}\hept{\begin{cases}y=6\\x=18\end{cases}}\)

c. \(\left(x-5\right)\left(y-5\right)=26=2\cdot13\Rightarrow x-5\in\left\{-2,-1,1,2,13,26\right\}\)

suy ra \(\left(x,y\right)\in\left\{\left(6,31\right);\left(31,6\right);\left(7,18\right);\left(18,7\right)\right\}\)

b.\(4xy+5y-14x=3\Leftrightarrow8xy+10y-28x=6\)

\(\Leftrightarrow\left(4x+5\right)\left(2y-7\right)=-29\)

mà 4x+5>5\(\Rightarrow4x+5=29\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)

8 tháng 3 2018

 x2-6xy+5y2=121

<=> x2-xy-5xy+5y2=121

<=> x(x-y)-5y(x-y)=121

<=>(x-5y)(x-y)=121

Vì x,y nguyên nên x-5y và x-y có giá trị nguyên 

=> x-5y và x-y là ước của 121

Mà Ư(21) ={ 1;-1;11;-11;121;-121}

TH1: x-5y=1 và x-y=121

=> x-5y-x+y=1-121

<=> -4y=-120

<=> y=30 ( là số nguyên)

=> x-30=121 <=> x=151 ( là số nguyên )

TH2: x-5y=-1 và x-y=-121

=> x-5y-x+y=120

<=>-4y=120

<=> y=-30( là số nguyên) 

=> x+30=-121 <=>x=-151

TH3 : x-5y=121 và x-y=1

=> x-5y-x+y=121-1

<=> -4y=120 <=> y=-30( là số nguyên )

=> x= -29( là số nguyên )

TH4: x-5y=-121 và x-y=-1

=> x-5y-x+y= -121+1

<=> -4y=-120 <=> y=30( là số nguyên )

=> x-30=-1<=> x=29( là số nguyên)

TH5: x-5y=11 và x-y=11

=> x-5y-x+y=11-11

<=> -4y=0 <=> y=0( là số nguyên)

=> x=11( là số nguyên )

TH6 x-5y=-11 và x-y=-11

=> x-5y-x+y=-11+11

<=> -4y=0<=> y=0( là số nguyên)

=>x=-11 ( là số nguyên)

Ở trên đây mk không nhấn được thuộc Z nên mk viết là " là số nguyên" .Nếu bạn viết vào bài thì ghi dấu thuộc với Z nhé!!

Học tốt

8 tháng 3 2018

pt <=> (x^2-xy)-(5xy-5y^2) = 121

<=> x.(x-y)-5y.(x-y) = 121

<=> (x-y).(x-5y) = 121

Đến đó bạn dùng ước bội mà giải nha

Tk mk