Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có thể thay đề bài từ tìm nghiệm nguyên thành tìm nghiệm.
Ta có: \(x^2-10x+29=\left(x-5\right)^2+4\ge4>0;y^2+6y+14=\left(y+3\right)^2+5\ge5>0\).
Từ đó \(\left(x^2-10x+29\right)\left(y^2+6y+14\right)\ge4.5=20\).
Do đẳng thức xảy ra nên ta phải có: \(\left\{{}\begin{matrix}\left(x-5\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=-3\end{matrix}\right.\).
Vậy...
từ pt suy ra((x-5)^2+4)((y+3)^2+5)-20=0
((x-5)(y+3))^2+5(x-5)^2+4(y+3)^2+20-20=0
((x-5)(y+3)^2+5(x-5)^2+4(y+3)^2=0
suy ra x=5,y=-3
\(\Leftrightarrow x^2+3xy+3y^2+xy-2x-6y=5\)
\(\Leftrightarrow x\left(x+3y\right)+y\left(x+3y\right)-2\left(x+3y\right)=5\)
\(\Leftrightarrow\left(x+y-2\right)\left(x+3y\right)=5\)
Bảng giá trị:
x+y-2 | -5 | -1 | 1 | 5 |
x+3y | -1 | -5 | 5 | 1 |
x | -4 | 4 | 2 | 10 |
y | 1 | -3 | 1 | -3 |
Vậy \(\left(x;y\right)=\left(-4;1\right);\left(4;-3\right);\left(2;1\right);\left(10;-3\right)\)
(x2-xy-6y2)+(2x-6y)-10 =0
[(x2-3xy)+(2xy-6y2)] + 2(x-3y) -10 = 0
(x-3y).(x+2y) + 2(x-3y) -10 = 0
(x-3y).(x+2y+2)=10
vì x,y nguyên x-3y và x+2y+2 phải nguyên
mà 10=1.10=(-1).(-10)=2.5=(-2).(-5)=10.1=(-10).(-1)=5.2=(-5).(-2)
a.ta có \(\left(x+3\right)\left(y-7\right)=-21\Rightarrow y-7\in\left\{-3,-1\right\}\) ( do x+3>3 và 0>y-7>-7)
\(\Rightarrow\hept{\begin{cases}y=4\\x=4\end{cases}\text{ hoặc }}\hept{\begin{cases}y=6\\x=18\end{cases}}\)
c. \(\left(x-5\right)\left(y-5\right)=26=2\cdot13\Rightarrow x-5\in\left\{-2,-1,1,2,13,26\right\}\)
suy ra \(\left(x,y\right)\in\left\{\left(6,31\right);\left(31,6\right);\left(7,18\right);\left(18,7\right)\right\}\)
b.\(4xy+5y-14x=3\Leftrightarrow8xy+10y-28x=6\)
\(\Leftrightarrow\left(4x+5\right)\left(2y-7\right)=-29\)
mà 4x+5>5\(\Rightarrow4x+5=29\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)