Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> x2 + (3y - 2)x + (2y2 - 4y + 3) = 0 (1)
Coi (1) là phương trình bậc 2 ẩn x
\(\Delta\) = (3y - 2)2 - 4 (2y2 - 4y + 3) = 9y2 - 12y + 4 - 8y2 + 16y - 12 = y2 + 4y - 8
Để (1) có nghiệm x; y nguyên <=> \(\Delta\) là số chính phương
<=> y2 + 4y - 8 = k2 (k nguyên)
<=> y2 + 4y + 4 - k2 = 12
<=> (y +2)2 - k2 = 12 <=> (y + 2 + k).(y + 2 - k) = 12
=> (y + 2 + k) \(\in\) Ư(12) = {12;-12;3;-3;4;-4;6;-6;2;-2;1;-1}
y+2+k | 12 | -12 | 1 | -1 | 3 | -3 | 4 | -4 | 2 | -2 | 6 | -6 |
y+2-k | 1 | -1 | 12 | -12 | 4 | -4 | 3 | -3 | 6 | -6 | 2 | -2 |
k | 13/2 (L) | -11/2 (L) | -11/2 (L) | 11/2(L) | -1/2(L) | 1/2(L) | 1/2(L) | -1/2(L) | -2 | 2 | 2 | -2 |
y | 2 | -6 | 2 | -6 |
Vậy y = -6 hoặc y = 2
Thay y = -6 vào (1) => x2 -20x + 99 = 0 <=> x = 11 hoặc x = 9
Thay y = 2 vào (1) => x2 + 4x + 3 = 0 <=> x = -1 hoặc x = -3
Vậy ...
\(y\in\left(-\infty;\infty\right)\)
\(-2y^2-3xy-2y+2x^2+6x=1\)
\(-2y^2-3xy-2y-2x^2+6x-1=0\)
\(-2y^2-\left(3x+2\right)y+2x^2+6x-1=0\)
\(y=\frac{\sqrt{25x^2+60x-4-3x-2}}{4}\)
\(y=-\frac{\sqrt{25x^2+60x-4+3x+2}}{4}\)
#Ứng Lân
Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số
Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số
\(6x^2y^4+3x^2-10y^3=-2\)
\(\Leftrightarrow3x^2\left(2y^3+1\right)-10y^3-5+5=-2\)
\(\Leftrightarrow3x^2\left(2y^3+1\right)-5\left(2y^3+1\right)=-7\)
\(\Leftrightarrow\left(3x^2-5\right)\left(2y^3+1\right)=-7\)
\(\Rightarrow\left(3x^2-5\right);\left(2y^3+1\right)\in\left\{-1;1;-7;7\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(\pm\dfrac{2}{\sqrt[]{3}};\sqrt[3]{3}\right);\left(\pm\sqrt[]{2};\sqrt[3]{4}\right);\left(\varnothing;0\right);\left(\pm2;-1\right)\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(\pm2;-1\right)\right\}\left(x;y\in Z\right)\)
6x2y3 +3x2 - 10y3 = -2
\(_{_{ }^{ }\Leftrightarrow}\) 2y3(3x2 \(-\) 2) + 3x2 \(-\) 2= -4
\(_{_{ }^{ }\Leftrightarrow}\)\(\left(3x^2-2\right)\left(2y^3+1\right)=-4=-1.4=-2.2\)
Vì x2 \(\ge\)0 nên 3x2 -2 \(\ge\)-2
Ta có các trường hợp:
TH1: \(\left\{{}\begin{matrix}3x^2-2=-1\\2y^3+1=4\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=\pm\dfrac{1}{\sqrt{3}}\\y=\sqrt[3]{\dfrac{3}{2}}\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}3x^2-2=2\\2y^3+1=-2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=\pm\dfrac{2}{\sqrt{3}}\\y=\sqrt[3]{\dfrac{-3}{2}}\end{matrix}\right.\)
TH3: \(\left\{{}\begin{matrix}3x^2-2=-2\\2y^3+1=2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=0\\y=\sqrt[3]{\dfrac{1}{2}}\end{matrix}\right.\)
Vậy .....
a/ \(\Leftrightarrow2x^2-\left(3y-6\right)x-2y^2-2y-1=0\) (1)
\(\Delta=\left(3y-6\right)^2+8\left(2y^2+2y+1\right)=\left(5y-2\right)^2+40\)
Để (1) có nghiệm nguyên thì \(\Delta\) là số chính phương
\(\Rightarrow\left(5y-2\right)^2+40=k^2\) với \(k\in Z\)
\(\Rightarrow k^2-\left(5y-2\right)^2=40\)
\(\Rightarrow\left(k+5y-2\right)\left(k-5y+2\right)=40\)
Do \(\left(k+5y-2\right)+\left(k-5y+2\right)=2k\) chẵn nên chúng cùng tính chẵn lẻ
Vậy ta chỉ cần xét các cặp ước cùng tính chẵn lẻ của 40 là (dài quá, bạn tự xét)
b/ \(\Leftrightarrow2x^2+4x+2=21-3y^2\)
\(\Leftrightarrow2\left(x+1\right)^2=3\left(7-y^2\right)\)
Do vế trái chẵn và không âm \(\Rightarrow\) vế phải chẵn và không âm
\(\Rightarrow y^2\) lẻ và \(y^2\le7\Rightarrow y^2=\left\{0;1;4\right\}\)
\(\Rightarrow y^2=1\Rightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)
\(\Rightarrow2\left(x+1\right)^2=18\)
\(\Rightarrow\left(x+1\right)^2=9\Rightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\)