Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 105 là số nguyên lẻ nên 2x+5y+1 và 2020lxl+y+x2+x là số lẻ
=> 5y chẵn => y chẵn
Có:x2+x=x(x+1) là số chẵn nên 2020lxl lẻ
=>x=0
Thay x=0 vào phương trình (2x+5y+1)(2020lxl+y+x2+x)=105 ta được:
\(\left(5y+1\right)\left(y+1\right)=105\Leftrightarrow5y^2+6y-104=0\)
Do \(y\in Z\)nên ta tìm ra y=4
Vậy phương trình có nghiệm là \(\left(x;y\right)=\left(0;4\right)\)
1: Tìm x, y nguyên tố thoả mãn
y2 – 2x2 = 1
Hướng dẫn:
Ta có y2 – 2x2 = 1 ⇒ y2 = 2x2 +1 ⇒ y là số lẻ
Đặt y = 2k + 1 (với k nguyên).Ta có (2k + 1)2 = 2x2 + 1
⇔ x2 = 2 k2 + 2k ⇒ x chẵn , mà x nguyên tố ⇒ x = 2, y = 3
2: Tìm nghiệm nguyên dương của phương trình
(2x + 5y + 1)(2|x| + y + x2 + x) = 105
Hướng dẫn:
Ta có: (2x + 5y + 1)(2|x| + y + x2 + x) = 105
Ta thấy 105 lẻ ⇒ 2x + 5y + 1 lẻ ⇒ 5y chẵn ⇒ y chẵn
2|x| + y + x2 + x = 2|x| + y + x(x+ 1) lẻ
có x(x+ 1) chẵn, y chẵn ⇒ 2|x| lẻ ⇒ 2|x| = 1 ⇒ x = 0
Thay x = 0 vào phương trình ta được
(5y + 1) ( y + 1) = 105 ⇔ 5y2 + 6y – 104 = 0
⇒ y = 4 hoặc y = ( loại)
Thử lại ta có x = 0; y = 4 là nghiệm của phương trình
đậu xanh đậu đỏ
đậu đen đậu vàng
bạn ơi cùng đậu
xem vui không nào...
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
Ta có: \(\left(\sqrt{2}\right)^2+a\cdot\sqrt{2}+b=0\)
\(\Leftrightarrow a\sqrt{2}+b=-2\)
Vì b là số nguyên
và -2 cũng là số nguyên
nên \(a\sqrt{2}\) cũng là số nguyên(vô lý)
\(x^2+ax+b=0\) có nghiệm là \(\sqrt{2}\) nên
\(2+a\sqrt{2}+b=0\\ \Leftrightarrow b=a\sqrt{2}\)
Mà \(a,b\in Z\) nên đẳng thức xảy ra khi: \(a=b=0\)