Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{148-x}{13}-1+\frac{169-x}{17}-2+\frac{186-x}{17}-3+\frac{199-x}{16}-4=0\)\(\frac{135-x}{13}+\frac{135-x}{17}+\frac{135-x}{17}+\frac{135-x}{16}=0\)
(135-x)(\(\frac{1}{13}+\frac{1}{17}+\frac{1}{17}+\frac{1}{16}\))=0
135-x=0
x=135
Có : \(\frac{148-x}{13}+\frac{169-x}{17}+\frac{186-x}{17}+\frac{199-x}{16}=10\)
\(\Leftrightarrow\)\(\left(\frac{148-x}{13}-1\right)+\)\(\left(\frac{169-x}{17}-2\right)+\)\(\left(\frac{186-x}{17}-3\right)\) + \(\left(\frac{199-x}{16}-4\right)=10\)
\(\Leftrightarrow\) \(\frac{135-x}{13}+\frac{135-x}{17}+\frac{135-x}{17}+\frac{135-x}{16}\)= 10
\(\Leftrightarrow\) \(\left(135-x\right)\left(\frac{1}{13}+\frac{1}{17}+\frac{1}{17}+\frac{1}{16}\right)=0\)
\(\Leftrightarrow\) \(135-x=0\) \(\left(\frac{1}{13}+\frac{1}{17}+\frac{1}{17}+\frac{1}{16}\right)\ne0\)
\(\Leftrightarrow\) \(x=135\)
Vậy \(x=135\)
cộng thêm 1 vào mỗi vế là ra ấy mà. bạn động não chút đi
\(\Leftrightarrow\frac{148-x}{25}-1+\frac{169-x}{23}-2+\frac{186-x}{21}-3+\frac{199-x}{19}-4=0\)
\(\Leftrightarrow\frac{123-x}{25}+\frac{123-x}{23}+\frac{123-x}{21}+\frac{123-x}{19}=0\)
\(\Leftrightarrow\left(123-x\right)\left(\frac{1}{25}+\frac{1}{23}+\frac{1}{21}+\frac{1}{19}\right)=0\)
Mà \(\frac{1}{25}+\frac{1}{23}+\frac{1}{21}+\frac{1}{19}\ne0\)
\(\Rightarrow123-x=0\Rightarrow x=123\)
Vậy Tập nghiệm của phương trình là \(S=\left\{123\right\}\)
<=> 148-×/25 -1 + 169-x/23 -2 + 186-x/21 - 3 + 199-×/19 - 4=0
<=> (123-x)(1/25+1/23+1/21+1/19)=0
<=> x=123
Chúc bạn học tốt
a) \(\frac{148-x}{25}+\frac{169-x}{23}+\frac{186-x}{21}+\frac{199-x}{19}=10\)
\(\Leftrightarrow\left(\frac{148-x}{25}-1\right)+\left(\frac{169-x}{23}-2\right)+\left(\frac{186-x}{21}-3\right)+\left(\frac{199-x}{19}-4\right)=0\)
\(\Leftrightarrow\frac{123-x}{25}+\frac{123-x}{23}+\frac{123-x}{21}+\frac{123-x}{19}=0\)
\(\Leftrightarrow\left(123-x\right)\left(\frac{1}{25}+\frac{1}{23}+\frac{1}{21}+\frac{1}{19}\right)=0\)
\(\Leftrightarrow x=123\)
c) \(x^4-10.2^x+16=0\)
\(\Leftrightarrow\left(2^x\right)^2-10.2^x+16=0\)
Ta có:
\(2^x=t\)
\(\Rightarrow t^2-10t+16=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=8\\t=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
a) 3x - 2(5 + 2x) =45 - 2x
=> 3x - 10 - 4x = 45 - 2x
=> 3x - 4x + 2x = 45 + 10
=> x = 55
b) \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)
=> \(\frac{x-3}{5}=\frac{2x+17}{3}\)
=> 5(2x + 17) = 3(x - 3)
=> 10x + 85 = 3x - 9
=> 7x = -94
=> x = -94/7
c) \(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x+1\right)}{7}-5\)
=> \(\frac{5x-3}{6}-\frac{7x-1}{4}=\frac{4x-33}{7}\)
=> \(\frac{10x-6}{12}-\frac{21x-3}{12}=\frac{4x-33}{7}\)
=> \(\frac{-11x-3}{12}=\frac{4x-33}{7}\)
=> (-11x - 3).7 = (4x - 33).12
= -77x - 21 = 48x - 396
=> x = 3
d) (x - 1)(5x + 3) = (3x - 8)(x - 1)
=> (x - 1)(5x + 3) - (3x - 8)(x -1) = 0
=> (x - 1)(2x + 11) = 0
=> \(\orbr{\begin{cases}x-1=0\\2x+11=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-5,5\end{cases}}\)
e) (x - 1)(x2 + 5x - 2) - (x3 - 1) = 0
=> (x - 1)(x2 + 5x - 2) - (x - 1)(x2 + x + 1) = 0
=> (x - 1)(4x - 3) = 0
=> \(\orbr{\begin{cases}x-1=0\\4x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=0,75\end{cases}}\)
f) \(\frac{x-17}{33}+\frac{x-21}{29}+\frac{x}{25}=4\)
=> \(\left(\frac{x-17}{33}-1\right)+\left(\frac{x-21}{29}-1\right)+\left(\frac{x}{25}-2\right)=0\)
=> \(\frac{x-50}{33}+\frac{x-50}{29}+\frac{x-50}{25}=0\)
=> \(\left(x-50\right)\left(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}\right)=0\)
=> x - 50 = 0 (Vì \(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}\ne0\))
=> x = 50
b, \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)
\(\Leftrightarrow\frac{x-3}{5}=\frac{17+2x}{3}\Leftrightarrow3x-9=85+10x\)
\(\Leftrightarrow-7x=94\Leftrightarrow x=-\frac{94}{7}\)
f, sửa : \(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\)
\(\Leftrightarrow\frac{x+1}{65}+1+\frac{x+3}{63}+1=\frac{x+5}{61}+1+\frac{x+7}{59}+1\)
\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}=\frac{x+66}{61}+\frac{x+66}{59}\)
\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}-\frac{x+66}{61}-\frac{x+66}{59}=0\)
\(\Leftrightarrow\left(x+66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\ne0\right)=0\)
\(\Leftrightarrow x=-66\)
\(\frac{148-x}{25}+\frac{169-x}{23}+\frac{186-x}{21}+\frac{199-x}{19}=10\)
\(\Leftrightarrow\frac{148-x}{25}-1+\frac{169-x}{23}-2+\frac{186-x}{21}-3+\frac{199-x}{19}-4=0\)
\(\Leftrightarrow\frac{148-x}{25}-\frac{25}{25}+\frac{169-x}{23}-\frac{46}{23}+\frac{186-x}{21}-\frac{63}{21}+\frac{199-x}{19}-\frac{76}{19}=0\)
\(\Leftrightarrow\frac{123-x}{25}+\frac{123-x}{23}+\frac{123-x}{21}+\frac{123-x}{19}=0\)
\(\Leftrightarrow\left(123-x\right).\left(\frac{1}{25}+\frac{1}{23}+\frac{1}{21}+\frac{1}{19}\right)=0\)
\(\Leftrightarrow123-x=0\left(\text{vì }\frac{1}{25}+\frac{1}{23}+\frac{1}{21}+\frac{1}{19}\ne0\right)\)
<=>x=123
Vậy S={123}
\(\left(\frac{148-x}{13}-1\right)+\left(\frac{169-x}{17}-2\right)+\left(\frac{186-x}{17}-3\right)+\left(\frac{199-x}{16}-4\right)=10-1-2-3-4\)
VT có tử =(135-x) VP=0
Vậy: x=135