Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( mik k ghi đề nhé bn)
a) (2x)^3 - y^3 + (2x)^3 + y^3 - 16x^3 + 16xy = 16
=> 8x^3 - y^3 + 8x^3 + y^3 - 16x^3 + 16xy = 16
=> 16xy = 16
=> xy = 1
Vì x, y nguyên => x = 1, y = 1 hoặc x = -1, y = -1
mik xin lỗi nha, mik chỉ bt làm câu a
b ) x2 - 4x - 2y + xy + 1 = 0
( x2 - 4x + 4 ) - y ( 2 - x ) -3 = 0
( x - 2 )2 - y ( 2 - x ) = 3
( 2 - x ) ( 2 - x - y ) = 3
đến đây lập bảng tìm ra x,y
a) x2 + y2 + xy + 3x - 3y + 9 = 0
2x2 + 2y2 + 2xy + 6x - 6y + 18 = 0
( x2 + 2xy + y2 ) + ( x2 + 6x + 9 ) + ( y2 - 6y + 9 ) = 0
( x + y )2 + ( x + 3 )2 + ( y - 3 )2 = 0
\(\Rightarrow\)( x + y )2 = ( x + 3 )2 = ( y - 3 )2 = 0
\(\Rightarrow\)x = -3 ; y = 3
Bạn thông cảm, mình phải sử dụng cách của lớp 9 vậy :))
\(2x^2+8x=67-3y^2\Leftrightarrow2x^2+8x+\left(3y^2-67\right)=0\)\(\left(x,y>0\right)\)
Xét \(\Delta'=16-2.\left(3y^2-67\right)=-6y^2+150\)
Để phương trình có nghiệm thì \(0\le\Delta'\le150\)
\(\Rightarrow0< y\le5\)(Vì x,y nguyên dương)
Do đó ta xét y trong khoảng trên, được :
1. Với y = 1 suy ra phương trình : \(2x^2+8x-64=0\Leftrightarrow x^2+4x-32=0\Rightarrow x=4\)(Nhận ) hoặc \(x=-8\)( Loại)
2. Với y = 2 suy ra phương trình : \(2x^2+8x-55=0\Rightarrow x=\frac{-4+3\sqrt{14}}{2}\)(Loại) hoặc \(x=\frac{-4-3\sqrt{14}}{2}\)(Loại)
3. Với y = 3 suy ra phương trình : \(2x^2+8x-40=0\Leftrightarrow x^2+4x-20=0\Rightarrow x=-2+2\sqrt{6}\)(loại) hoặc \(x=-2-2\sqrt{6}\)(Loại)
4. Với y = 4 suy ra phương trình : \(2x^2+8x-19=0\Rightarrow x=\frac{-4+3\sqrt{6}}{2}\)(Loại) hoặc \(x=\frac{-4-3\sqrt{6}}{2}\)(Loại)
5. Với y = 5 suy ra phương trình : \(2x^2+8x+8=0\Leftrightarrow x^2+4x+4=0\Rightarrow x=-2\)(Loại)
Vậy kết luận : Tập nghiệm của phương trình là : \(\left(x;y\right)=\left(4;1\right)\)
1/ Đặt \(a-b=x,b-c=y,c-a=z\)
Ta có: \(\frac{y}{x\left(-z\right)}+\frac{z}{y\left(-x\right)}+\frac{x}{z\left(-y\right)}=\frac{2}{x}+\frac{2}{y}+\frac{2}{z}\)
\(\frac{\left(-1\right)y^2}{xyz}+\frac{\left(-1\right)z^2}{xyz}+\frac{\left(-1\right)x^2}{xyz}=\frac{2yz}{xyz}+\frac{2zx}{xyz}+\frac{2xy}{xyz}\)
\(\left(-1\right)\left(x^2+y^2+z^2\right)=2\left(xy+yz+zx\right)\Rightarrow x^2+y^2+z^2+2xy+2yz+2zx=0\)
\(\Rightarrow\left(x+y+z\right)^2=0\Rightarrow x+y+z=0\)luôn đúng vì a-b+b-c+c-a=0
Vậy suy ra đpcm. BẤM ĐÚNG NHÉ
Câu 1 gần tương tự bài 3.2 sách bài tập toán 8 tập 2 trang 18
1. Ta có:
\(a^2+5b^2-\left(3a+b\right)\ge3ab-5\)
\(\Leftrightarrow2a^2+10b^2-6a-2b-6ab+10\ge0\)
\(\Leftrightarrow a^2-6ab+9b^2+a^2-6a+9+b^2-2b+1\ge0\)
\(\Leftrightarrow\left(a-3b\right)^2+\left(a-3\right)^2+\left(b-1\right)^2\ge0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}a=3\\b=1\end{cases}}\)
2. Giải:
Ta có: \(2x^2+3y^2+4x=19\)
\(\Leftrightarrow2x^2+4x+2=21-3y^2\)
\(\Leftrightarrow2\left(x+1\right)^2=3\left(7-y^2\right)\left(1\right)\)
Xét thấy \(VT⋮2\Leftrightarrow3\left(7-y^2\right)⋮2\Leftrightarrow y\) lẻ (2)
Mặt khác \(VT\ge0\Leftrightarrow3\left(7-y^2\right)\ge0\Leftrightarrow y^2\le7\) (3)
Kết hợp (2) và (3) suy ra:
\(y^2=1\) Thay vào \(\left(1\right)\) ta có:
\(2\left(x+1\right)^2=18\). Vậy ta tính được các nghiệm:
\(\left(x,y\right)=\left(2;1\right);\left(2;-1\right);\left(-4;-1\right);\left(-4;1\right)\)
a) \(2x^2-4x+m=0\)
\(2\left(x^2-2x\right)=-m\)
\(x^2-2x+1=-\frac{m}{2}+1\)
\(\left(x-1\right)^2=-\left(\frac{m}{2}-1\right)\)
\(\Leftrightarrow\hept{\begin{cases}x-1=\sqrt{-\left(\frac{m}{2}-1\right)}\\x-1=-\sqrt{-\left(\frac{m}{2}-1\right)}\end{cases}}\)
để căn có nghĩa thì \(-\left(\frac{m}{2}-1\right)\ge0\Leftrightarrow=\frac{m}{2}-1\le0\Leftrightarrow m\le2\)
vậy pt luôn có 2 nghiệm phân biệt với điều kiện m <= 2
b)
\(mx^2-4x-5=0\)
\(x^2-\frac{4}{m}x-\frac{5}{m}=0\)
\(\left(x^2-2x.\frac{2}{m}+\frac{4}{m^2}\right)=\frac{4}{m^2}+\frac{5}{m}\)
\(\left(x-\frac{2}{m}\right)^2=\frac{4+5m}{m^2}\)
\(\Leftrightarrow\hept{\begin{cases}x-\frac{2}{m}=\sqrt{\frac{4+5m}{m^2}}\\x-\frac{2}{m}=-\sqrt{\frac{4+5m}{m^2}}\end{cases}}\)
để căn có nghĩa thì
\(\sqrt{\frac{4+5m}{m^2}}\ge0\Leftrightarrow4+5m\ge0\Leftrightarrow m\ge-\frac{4}{5}\)
vậy pt có 2 nghiệm với dk m .= -4/5
Ta có:
2x2+3y2+4x=19 ⇔ 2x2+4x=19−3y2 ⇔ 2x2+4x+2=21−3y2 ⇔ 2(x+1)2=3(7−y2) (*)
Vì 2(x+1)2 chia hết cho 2 nên 3(7−y2) chia hết cho 2,
hay 7−y2 chia hết cho 2 ,
hay y2 lẻ (1)
Lại có: 7−y2≥0 (do (x+1)2≥0) nên y2≤7 (với y∈Z ), tức là y2∈{1;4} (2)
Từ (1);(2) , suy ra y2=1 ⇒ y∈{−1;1}
Khi đó, phương trình (*) sẽ có dạng 2(x+1)2=18 ⇔ (x+1)2=9 ⇔ x+1=3x+1=−3 ⇔ x=2x=−4
Vậy, các cặp nghiệm nguyên phải tìm: (x;y)={(2;1),(2;−1),(−4;1),(−4;−1)} (thỏa mãn x,y∈Z )
Ta có:
2x2+3y2+4x=19 ⇔ 2x2+4x=19−3y2 ⇔ 2x2+4x+2=21−3y2 ⇔ 2(x+1)2=3(7−y2
) (*)
Vì 2(x+1)2
chia hết cho 2 nên 3(7−y2
) chia hết cho 2,
hay 7−y2
chia hết cho 2 ,
hay y2
lẻ (1)
Lại có: 7−y2≥0 (do (x+1)2≥0) nên y2≤7 (với y∈Z ), tức là y2∈{1;4} (2)
Từ (1);(2) , suy ra y2=1 ⇒ y∈{−1;1}
Khi đó, phương trình (*) sẽ có dạng 2(x+1)2=18 ⇔ (x+1)2=9 ⇔ x+1=3x+1=−3 ⇔ x=2x=−4
Vậy, các cặp nghiệm nguyên phải tìm: (x;y)={(2;1),(2;−1),(−4;1),(−4;−1)} (thỏa mãn x,y∈Z )
:3