Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nghiệm của đa thức làm cho:\(x^2-6x+5=0\Leftrightarrow x^2-x-5x+5=0\)
\(\Rightarrow x\left(x-1\right)-5\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(x-5\right)=0\)\(\Rightarrow\orbr{\begin{cases}x-1=0\\x-5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=5\end{cases}}\)
Tập nghiệm của pt S={1,5}
Ta có :
\(x^2-6x+5=0\)
\(\Leftrightarrow\left(x^2-6x+9\right)-4=0\)
\(\Leftrightarrow\left(x-3\right)^2-2^2=0\)
\(\Leftrightarrow\left(x-3-2\right)\left(x-3+2\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=5\end{cases}}\)
Vậy \(x\in\left\{1;5\right\}\)
Nêu da thúc do co nghiệm Nguyen thi se la ước cua he so tu do hay la 10 ma ước 10 la +-1,+-2,+-5,+-10
neu x=1=> da thúc co gia tri la 5 khác 0
neu x=-1 => da thúc bang 17 khác 0
neu x=2 => d thúc bang 14 khác 0
neu x=-2 => da thúc bang 38 khác 0
neu x=5=> da thúc bang 605 khác 0
neu x=-5=> da thúc bang 665 khác 0
neu x=10=> da thúc bang 9950 khác 0
neu x=-10 => da thúc bang 10070 khác 0
vay da thúc do ko co nghiem
Để có nghiệm của đa thức thì \(-6x+14=0\)
\(-6x=0-14\)
\(-6x=-14\)
\(x=\frac{-14}{-6}\)
\(x=\frac{7}{3}\)
Ta có : -6x + 14 = 0
-6x = -14
x = -14 : (-6)
x = \(\frac{7}{3}\)
Vậy x = \(\frac{7}{3}\)là nghiệm của đa thức.
Chúc bạn học tốt
\(3x^3+4x^2+2x+1=0\)
\(\Leftrightarrow\left(3x^3+x^2+x\right)+\left(3x^2+x+1\right)=0\)
\(\Leftrightarrow x\left(3x^2+x+1\right)+1\left(3x^2+x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x^2+x+1\right)=0\)
Ta có:\(3x^2+x+1=3\left(x^2+x.\frac{1}{3}+\frac{1}{3}\right)\)
\(=3\left(x^2+2.x.\frac{1}{6}+\frac{1}{36}-\frac{1}{36}+\frac{1}{3}\right)\)
\(=3\left[\left(x+\frac{1}{6}\right)^2+\frac{11}{36}\right]\ge3.\frac{11}{36}=\frac{11}{12}>0\forall x\)
Do đó x + 1 = 0 tức là x = -1
\(3x^3+3x^2+x^2+x+x+1=0\)
\(3x^2.\left(x+1\right)+x.\left(x+1\right)+\left(x+1\right)=0\)
\(\left(x+1\right).\left(3x^2+x+1\right)=0\)
+)\(3x^2+x+1=0\Leftrightarrow3.\left(x^2+x+\frac{1}{3}\right)=0\Leftrightarrow3.\left(x+\frac{1}{6}\right)^2+\frac{11}{12}=0\left(loai\right)\)
+) x+1=0 <=> x=-1
Lời giải:
$M(x)=(6+4x)(-x+2)=0$
\(\Leftrightarrow \left[\begin{matrix} 6+4x=0\\ -x+2=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=-\frac{3}{2}\\ x=2\end{matrix}\right.\)
Vậy nghiệm của đa thức $M(x)$ là $x=\frac{-3}{2}$ và $x=2$
ta có: \(5x^2+\left(x^2-2.\frac{3}{2}x+\frac{9}{4}\right)-\frac{45}{4}\)
=>\(5x^2\ge0\forall x,\left(x-\frac{3}{2}\right)^2\ge0\)
=>\(6x^2-3x-9\ge9\)
=>vô nghiệm