\(f\left(x\right)=2x^3+5x^2-x-6\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2019

Để đa thức f(x) có nghiệm thì 2x3+5x2-x-6 = 0

2x3+5x2-x-6 = 0

(2 + 5 + 6) + (x3 + x2 - x) = 0

   1             +     x4            = 0

                        x4             = 0 - 1 = (-1)

Do đó x4 = 1 hoặc x4 = (-1)

Vậy đa thức f(x) = 2x3 + 5x2 - x - 6 có nghiệm khi x = 1 hoặc x = -1

14 tháng 4 2018

a) \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)

\(f\left(x\right)=2x^6+\left(4-1\right)x^4+\left(5-1-4\right)x^3+\left(3-2\right)x^2+1\)

\(f\left(x\right)=2x^6+3x^4+x^2+1\)

b) \(2.1+3.1+1+1=7\)

c) \(\left\{{}\begin{matrix}x^6\ge0\\x^4\ge0\\x^2\ge0\end{matrix}\right.\) \(\Leftrightarrow2x^6+3x^4+x^2\ge0\Rightarrow2x^6+3x^4+x^2+1\ge1\)

=> f(x) >=1 => dpcm

13 tháng 5 2017

a, f(x) = x2 - 5x + 4

Ta có : a + b + c = 1 + (-5) + 4 = 0

=> f(1) = 12 - 5 + 4 = 0

Vậy x = 1 là một nghiệm của đa thức f(x)

b, f(x) = 2x2 + 3x + 1

Ta có : a - b + c = 2 - 3 + 1 = 0

=> f(-1) = 2 . (-1)2 + 3 . (-1) + 1 = 0

Vậy x = -1 là một nghiệm của đa thức f(x)

13 tháng 5 2017

a-b+c ở đâu vậy anh chị


6 tháng 8 2018

1) \(\left(x+1\right)^2\)

\(2.\left(x+1\right)\left(x+4\right)\)

6 tháng 8 2018

viết lại

2) \(f\left(x\right)=x^2+5x+4\)

29 tháng 3 2020

Bài 3 :

1. Thay x = -5 vào f(x) ta được :

\(\left(-5\right)^2-4\left(-5\right)+5=50\)

Vậy x = -5 không là nghiệm của đa thức trên .

Bài 2 :

1. Ta có : \(f_{\left(x\right)}=x\left(1-x\right)+\left(2x^2-x+4\right)\)

=> \(f_{\left(x\right)}=x-x^2+2x^2-x+4\)

=> \(f_{\left(x\right)}=x^2+4\)

=> \(x^2+4=0\)

Vậy đa thức trên vô nghiệm .

2. Ta có \(g_{\left(x\right)}=x\left(x-5\right)-x\left(x+2\right)+7x\)

=> \(g_{\left(x\right)}=x^2-5x-x^2-2x+7x\)

=> \(g_{\left(x\right)}=0\)

Vậy đa thức trên vô số nghiệm .

3. Ta có : \(h_{\left(x\right)}=x\left(x-1\right)+1\)

=> \(h_{\left(x\right)}=x^2-x+1\)

=> \(h_{\left(x\right)}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

=> \(\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)

Vậy đa thức vô nghiệm .

29 tháng 3 2020

Bài 3:

\(f\left(x\right)=x^2+4x-5.\)

+ Thay \(x=-5\) vào đa thức \(f\left(x\right)\) ta được:

\(f\left(x\right)=\left(-5\right)^2+4.\left(-5\right)-5\)

\(\Rightarrow f\left(x\right)=25+\left(-20\right)-5\)

\(\Rightarrow f\left(x\right)=25-20-5\)

\(\Rightarrow f\left(x\right)=5-5\)

\(\Rightarrow f\left(x\right)=0.\)

Vậy \(x=-5\) là nghiệm của đa thức \(f\left(x\right).\)

Chúc bạn học tốt!

8 tháng 4 2018

\(b)\) Ta có : 

\(7x^2-8x-15=0\)

\(\Leftrightarrow\)\(\left(7x^2+7x\right)-\left(15x+15\right)=0\)

\(\Leftrightarrow\)\(7x\left(x+1\right)-15\left(x+1\right)=0\)

\(\Leftrightarrow\)\(\left(7x-15\right)\left(x+1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}7x-15=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}7x=15\\x=-1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{15}{7}\\x=-1\end{cases}}}\)

Vậy nghiệm của đa thức \(g\left(x\right)=7x^2-8x-15\) là \(x=\frac{15}{7}\)  hoặc \(x=-1\)

Chúc bạn học tốt ~ 

8 tháng 4 2018

\(a)\) Ta có : 

\(2x^2-5x+3=0\)

\(\Leftrightarrow\)\(\left(2x^2-2x\right)+\left(-3x+3\right)=0\)

\(\Leftrightarrow\)\(2x\left(x-1\right)+\left(-3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\)\(\left(2x-3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-3=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=3\\x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{3}{2}\\x=1\end{cases}}}\)

Vậy nghiệm của đa thức \(f\left(x\right)=2x^2-5x+3\) là \(x=\frac{3}{2}\) hoặc \(x=1\)

Chúc bạn học tốt ~ 

23 tháng 6 2020

a) A(x) = f(x) + g(x) = ( 2x^3 + 3x - 4x^3 + 1/2 - 5x^4 ) + ( 3x^4 + 0,2 - 7x^2 + 5x^3 - 9x )

= 2x^3 + 3x - 4x^3 + 1/2 - 5x^4 + 3x^4 + 0,2 - 7x^2 + 5x^3 - 9x

= ( 2x^3 - 4x^3 + 5x^3 ) + ( 3x - 9x ) + ( 1/2 + 0,2 ) + ( -5x^4 + 3x^4 ) - 7x^2

= 3x^3 - 6x + 0,7 - 2x^4 - 7x^2

B(x) = f(x) - g(x) = ( 2x^3 + 3x - 4x^3 + 1/2 - 5x^4 ) - ( 3x^4 + 0,2 - 7x^2 + 5x^3 - 9x )

= 2x^3 + 3x - 4x^3 + 1/2 - 5x^4 - 3x^4 - 0,2 + 7x^2 - 5x^3 + 9x

= ( 2x^3 - 4x^3 - 5x^3 ) + ( 3x + 9x ) + ( 1/2 - 0,2 ) + ( -5x^4 - 3x^4 ) + 7x^2

= -7x^3 + 12x + 0,3 -8x^4 + 7x^2

7 tháng 4 2019

\(f_{\left(x\right)}-g_{\left(x\right)}=2x^5+x^4+1x^2+x+1-\left(2x^5+x^4-x^2+1\right)\)

                     \(=2x^5+x^4+1x^2+x+1-2x^5-x^4+x^2-1\)

                       \(=\left(2x^5-2x^5\right)+\left(x^4-x^4\right)+\left(1x^2+x^2\right)+x+\left(1-1\right)\)

                       \(=2x^2+x\)

+, Đặt \(2x^2+x=0\)

     \(\Leftrightarrow x.2x=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x=0\end{cases}}\Leftrightarrow x=0\)

                        

7 tháng 4 2019

ak bạn thêm kết kuận nha!