Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4x+12=0\)
\(4x=-12\\ x=-3\)
Vậy \(x=-3\) là nghiệm của đa thức.
b) \(5x-\dfrac{1}{6}=0\)
\(5x=\dfrac{1}{6}\\ x=\dfrac{1}{30}\)
Vậy \(x=\dfrac{1}{30}\) là nghiệm đa thức.
c) \(-6-2x=0\)
\(2x=-6\\ x=-3\)
Vậy \(x=-3\) là nghiệm của đa thức.
d) \(x^2+4x=0\)
\(x\left(x+4\right)=0\)
TH1: \(x=0\)
TH2: \(x+4=0\) hay \(x=-4\)
Vậy các nghiệm của đa thức là \(x=0,x=-4\).
e) \(x^3-4x=0\)
\(x\left(x^2-4\right)=0\)
TH1: \(x=0\)
TH2: \(x^2-4=0\), suy ra \(x^2=4\), do đó \(x=2\) hoặc \(x=-2\)
Vậy các nghiệm của đa thức là \(x=0,x=2,x=-2\)
f) \(x^5-27x^2=0\)
\(x^2\left(x^3-27\right)=0\)
Th1: \(x^2=0\) hay \(x=0\)
TH2: \(x^3-27=0\), suy ra \(x^3=27\), hay \(x=3\)
Vậy \(x=0,x=3\) là các nghiệm của đa thức.
\(\text{a)Đặt 4x+12=0}\)
\(\Rightarrow4x=0-12=-12\)
\(\Rightarrow x=\left(-12\right):4=-3\)
\(\text{Vậy đa thức 4x+12 có nghiệm là x=-3}\)
\(\text{b)Đặt 5x-}\dfrac{1}{6}=0\)
\(\Rightarrow5x=0+\dfrac{1}{6}=\dfrac{1}{6}\)
\(\Rightarrow x=\dfrac{1}{6}:5=\dfrac{1}{30}\)
\(\text{Vậy đa thức 5x-}\dfrac{1}{6}\text{ có nghiệm là }x=\dfrac{1}{30}\)
\(\text{c)Đặt (-6)-2x=0}\)
\(\Rightarrow2x=\left(-6\right)-0=-6\)
\(\Rightarrow2x=\left(-6\right):2=-3\)
\(\text{Vậy đa thức (-6)-2x có nghiệm là x=-3}\)
\(\text{d)Đặt }x^2+4x=0\)
\(\Rightarrow x\left(x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+4=0\Rightarrow x=0-4=-4\end{matrix}\right.\)
\(\text{Vậy đa thức }x^2+4x\text{ có 2 nghiệm là }x=0;x=-4\)
\(\text{e)Đặt }x^3-4x=0\)
\(\Rightarrow x\left(x^2-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-4=0\Rightarrow x^2=0+4=4\Rightarrow x=\pm2\end{matrix}\right.\)
\(\text{Vậy đa thức }x^3-4x\text{ có 3 nghiệm là }x=0;x=2;x=-2\)
\(\text{f)Đặt }x^5-27x^2=0\)
\(\Rightarrow x^2\left(x^3-27\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2=0\Rightarrow x=0\\x^3-27=0\Rightarrow x^3=0+27=27\Rightarrow x=3\end{matrix}\right.\)
\(\text{Vậy đa thức }x^5-27x^2\text{ có 2 nghiệm là }x=0;x=3\)
=> 2 f(x) = 6x^4 - 3x^2 - 5 + 4x^4 - 6x^3 + 7x^2 + 8x - 9
= 10x^4 - 6x^3 + 4x^2 + 8x - 14
=> 2.f ( x ) = 2 ( 5x^4 - 3x^3 + 2x^2 + 4x - 7 )
=> ( fx) = 5x^4 - 3x^3 + 2x^2 + 4x - 7
g(x) tự tìm
ta có:
f(x) + g(x) = 6x^4 - 3x^2 - 5
f(x) - g(x) = 4x^4 - 6x^3 + 7x^2 + 8x - 9
công hai vế lại với nhau ta được:
f(x)+g(x)+f(x)-g(x)=6x^4 - 3x^2 - 5 + 4x^4 - 6x^3 + 7x^2 + 8x - 9
=>2f(x)=6x4+4x4-6x3-3x2+7x2+8x-5-9
2f(x)=10x4-6x3+4x2+8x-14
2f(x)=2.(5x4-3x3+2x2+4x-7)
=>f(x)=5x4-3x3+2x2+4x-7
=>g(x)=6x^4 - 3x^2 - 5 -(5x4-3x3+2x2+4x-7)
=6x4-3x2-5-5x4+3x3-2x2-4x+7
=6x4-5x4+3x3-3x2-2x2-4x-5+7
=x4+3x3-5x2-4x+2
a) Đặt F(x)=0
⇔\(3x^2-6x+3x^3=0\)
\(\Leftrightarrow3x^3+3x^2-6x=0\)
\(\Leftrightarrow3x\left(x^2+x-2\right)=0\)
\(\Leftrightarrow3x\left(x^2+2x-x-2\right)=0\)
mà 3>0
nên \(x\left[x\left(x+2\right)-\left(x+2\right)\right]=0\)
\(\Leftrightarrow x\left(x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=1\end{matrix}\right.\)
Vậy: Sf(x)={0;-2;1}(1)
c) Thay x=0 vào đa thức g(x), ta được:
\(g\left(0\right)=-9+7\cdot0^4+2\cdot0^2+2\cdot0^3\)
\(=-9+0+0+0=-9\)
mà -9<0 nên x=0 không là nghiệm của đa thức g(x)(2)
Từ (1) và (2) suy ra x=0 là nghiệm của đa thức f(x) nhưng không là nghiệm của đa thức g(x)
`a)` Cho `f(x)=0`
`=>x-1/4x^2=0`
`=>x(1-1/4x)=0`
`@TH1:x=0`
`@TH2:1-1/4x=0=>1/4x=1=>x=4`
_______________________________________________________
`b)` Cho `g(x)=0`
`=>(2x+5)(1-2x)=0`
`@TH1:2x+5=0=>2x=-5=>x=-5/2`
`@TH2:1-2x=0=>2x=1=>x=1/2`
a) cho f(x) = 0
\(=>x-\dfrac{1}{4}x^2=0\)
\(x\left(1-\dfrac{1}{4}x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{1}{4}x=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
b) cho g(x) = 0
\(=>\left(2x+5\right)\left(1-2x\right)=0\)
\(=>\left[{}\begin{matrix}2x=-5\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{5}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
\(a)\) Ta có :
\(x^2+6x+9=0\)
\(\Leftrightarrow\)\(\left(x+3\right)^2=0\)
\(\Leftrightarrow\)\(x+3=0\)
\(\Leftrightarrow\)\(x=-3\)
Vậy nghiệm của đa thức \(f\left(x\right)=x^2+6x+9\) là \(x=-3\)
Chúc bạn học tốt ~