K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a; \(x^2+2x+3=x^2+2x+1+2=\left(x+1\right)^2+2>=2>0\forall x\)

=>Đa thức không có nghiệm

b: Đặt \(x^2+8x+7=0\)

=>\(x^2+x+7x+7=0\)

=>(x+1)(x+7)=0

=>\(\left[{}\begin{matrix}x=-1\\x=-7\end{matrix}\right.\)

c: Đặt \(x^2-9x+8=0\)

=>\(x^2-x-8x+8=0\)
=>(x-1)(x-8)=0

=>\(\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)

d: Đặt \(x^2-5x+6=0\)

=>\(x^2-2x-3x+6=0\)

=>(x-2)(x-3)=0

=>\(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

31 tháng 5 2016

Câu 1:    a) x = 1 là nghiệm của đa thức f(x)

              b) x = -1 là nghiệm của đa thức g(x)

              c) x = 1 là nghiệm của đa thức h(x)

Câu 2: Số 1 là ngiệm của đa thức f(x)

29 tháng 4 2016

+)đặt f(x)=3x2-5x+2=0

3x2-3x-2x+2=0

3x(x-1)-2(x-1)=0

(3x-2)(x-1)=0

3x=2 hoặc x=1

x=2/3 hoặc x=1

29 tháng 4 2016

+)đặt f(x)=3x^2-5x+2=0

3x^2-3x-2x+2=0

3x(x-1)-2(x-1)=0

(3x-2)(x-1)=0

=>x=2/3 hoặc x=1

11 tháng 4 2018

Giải:

a) Để đa thức có nghiệm

\(\Leftrightarrow x^2-64=0\)

\(\Leftrightarrow x^2=64\)

\(\Leftrightarrow x=\pm8\)

Vậy ...

d) Để đa thức có nghiệm

\(\Leftrightarrow x^2-81=0\)

\(\Leftrightarrow x^2=81\)

\(\Leftrightarrow x=\pm9\)

Vậy ...

h) Để đa thức có nghiệm

\(\Leftrightarrow x^2-6x=0\)

\(\Leftrightarrow\left(x-6\right)x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

Vậy ...

Các câu còn lại làm tương tự.

11 tháng 4 2018

a, x\(^2\) - 64 = 0

\(\Rightarrow\) x\(^2\) = 0 + 64

= 64

= 8\(^2\)

\(\Rightarrow\) x = 8

Vậy nghiệm của \(x^2-64\) là 8

d, \(x^2-81\) = 0

\(\Rightarrow\) x\(^2\) = 81

= 9\(^2\)

\(\Rightarrow\) x = 9

vậy nghiệm của \(x^2-81\) là 9

1 tháng 5 2018

1. Ta có :

f(x) = ( m - 1 ) . 12 - 3m . 1 + 2 = 0

f(x) = m - 1 - 3m + 2 = -2m + 1 = 0

\(\Rightarrow m=\frac{1}{2}\)

1 tháng 5 2018

2.

a) M(x) = -2x2 + 5x = 0 

\(\Rightarrow-2x^2+5x=x.\left(-2x+5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\-2x+5=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{2}\end{cases}}\)

b) N(x) = x . ( x - 1/2 ) + 2 . ( x - 1/2 ) = 0

N(x) = ( x + 2 ) . ( x - 1/2 ) = 0 

\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-\frac{1}{2}=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{2}\end{cases}}\)

c) P(x) = x2 + 2x + 2015 = x2 + x + x + 1 + 2014 = x . ( x + 1 ) + ( x + 1 ) + 2014 = ( x + 1 ) . ( x + 1 ) + 2014 = ( x + 1 )2 + 2014

vì ( x + 1 )2 + 2014 > 0 nên P(x) không có nghiệm

31 tháng 3 2016

              Giải

a)            8x - 16 x 2 = 0

       <=>  8x - 32 = 0

       <=>  8x = 32

       <=>    x = 4

b)           x2 - 81 = 0

       <=> x2  =  81

       <=> x = -9 hoặc x = 9.

c)           125 + x3 = 0

       <=>   x3 = -125

       <=>   x = -5

                 Đáp số:  a) x = 4

                              b) x = -9 hoặc x = 9

                              c) x = -5

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2  a) Xác định đa thức P(x) và Q(x)  b) Tìm nghiệm của đa thức P(x) và Q(x)  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1...
Đọc tiếp

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:
       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2
  a) Xác định đa thức P(x) và Q(x)
  b) Tìm nghiệm của đa thức P(x) và Q(x)
  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2
Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1 đa thức bậc 5 và có 6 hạng tử
Bài 3: Cho đa thức P(x) = x+ 7x2- 6x3+ 3x4+ 2x2+ 6x- 2x4+ 1
   a) Thu gọn đa thức rồi sắp xếp các số hạng của đa thức theo lũy thừa giảm dần của biến x
   b) Xác định bậc của đa thức, hệ số tự do, hệ số cao nhất
   c) Tính P(-1); P(0); P(1); P(-a)
Bài 4: Cho đa thức bậc hai P(x) = ax2+ bx+ c với a ≠ 0
   a) Chứng tỏ rằng nếu đa thức có nghiệm x = 1 thì sẽ có nghiệm x = \(\dfrac{c}{a}\)
   b) Chứng tỏ rằng nếu đa thức có nghiệm x = -1 thì sẽ có nghiệm x = -\(\dfrac{c}{a} \)

1
7 tháng 4 2018

pan a ban giong bup be lam nhung bup be lam = nhua deo va no del co nao nhe

27 tháng 8 2017

Gọi 1/4 số a là 0,25 . Ta có :

                   a . 3 - a . 0,25 = 147,07

                   a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )

                      a . 2,75 = 147,07

                         a = 147,07 : 2,75

                          a = 53,48

10 tháng 4 2018

1

a, 4x2+4x+2

= 2x2+2x2+2x+2x+2

= 2x2+(2x2+2x)+(2x+2)

= 2x2+ 2x(x+1)+2(x+1)

= 2x2+(2x+2)(x+1)

= 2x2+2(x+1)(x+1)

=2x2+2(x+1)2

Để 2x2+2(x+1)2=0

=>\(\left\{{}\begin{matrix}2x^2=0\\2\left(x+1\right)^2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x^2=0\\\left(x+1\right)^2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)(vô lý)

=> đa thức 4x2+4x+2 vô nghiệm

10 tháng 4 2018

1

b, y2+6y+10

= y2+3y+3y+9+1

= y(3+y)+3(y+3)+1

= (y+3)(y+3)+1

= (y+3)2+1

Có (y+3)2\(\ge\)0;1>0

=> (y+3)2+1>0

=> y2+6y+10 vô nghiệm

Bài làm

1) I = x.( 2 - x ) + 3( x - 2 )

Để đa thức trên có nghiệm

=> x.( 2 - x ) + 3( x - 2 ) = 0

=> x( 2 - x ) - 3( 2 - x ) = 0

=> ( 2 - x )( x - 3 ) = 0

=> \(\orbr{\begin{cases}2-x=0\\x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}}\)

Vậy x = 2 hoặc x = 3 là nghiệm phương trình.
2) K = x+ x+ x + 1

Để x+ x+ x + 1 có nghiệm

=> x+ x+ x + 1 = 0

=> x3( x + 1 ) + ( x + 1 ) = 0

=> ( x3 + 1 )( x + 1 ) = 0

=> \(\orbr{\begin{cases}x^3+1=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x^3=-1\\x=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=-1\\x=-1\end{cases}}}\)

Vậy x = -1 là nghiệm phương trình.
3) G = x100 - 8x97

Để phương trình x100 - 8x97 có nghiệm

=> x100 - 8x97 = 0

=> x97( x3 - 8 ) = 0

=> \(\orbr{\begin{cases}x^{97}=0\\x^3-8=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x^3=8\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)

Vậy x = 0 hoặc x = 2 là nghiệm phương trình. 

Lọ lại lp 7 tìm tòi thấy bài lm :>>

1, \(I=x\left(2-x\right)+3\left(x-2\right)=0\)

\(2x-x^2+3x-6=0\)

\(-x^2+5x-6=0\)

Nhân tài giải tiếp.

2, \(K=x^4+x^3+x+1=0\)

\(\left(x^3+1\right)\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-1\end{cases}}\)

3, \(G=x^{100}-8x^{97}=0\)

\(x^{97}\left(x^3-8=0\right)\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)( con thề con ko chép của a Chết)