Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(M\left(x\right)=2x-\frac{1}{2}=0\Leftrightarrow2x=0+\frac{1}{2}=\frac{1}{2}\Leftrightarrow x=\frac{1}{2}\div2=\frac{1}{4}\)
Vậy nghiệm của M( x ) là \(\frac{1}{4}\)
b) \(N\left(x\right)=\left(x+5\right)\left(4x^2-1\right)=0\) Chia 2 TH
TH1 : \(x+5=0\Leftrightarrow x=0-5=-5\)
TH2 : \(4x^2-1=0\Leftrightarrow4x^2=1\Leftrightarrow x^2=\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)
Vậy N( x ) có 2 nghiệm là \(x=-5;x=\frac{1}{2}\)
c) \(P\left(x\right)=9x^3-25x=0\Leftrightarrow x\left(9x^2-25\right)=0\) Chia 2 TH
TH1 : \(x=0\). TH2 : \(9x^2-25=0\Leftrightarrow9x^2=0+25=25\)
\(\Rightarrow x^2=\frac{25}{9}\Rightarrow x=\frac{5}{3}\). Vậy P( x ) có 2 nghiệm là \(x=0;x=\frac{5}{3}\)
Bài 1:
Thay x=1 vào đa thức F(x) ta được:
F(1) = 14+2.13-2.12-6.1+5 = 0
=> x=1 là nghiệm của đa thức F(x)
Tương tự ta thế -1; 2; -2 vào đa thức F(x)
Vậy x=1 là nghiệm của đa thức F(x)
\(2x-10=0\Leftrightarrow2\left(x-5\right)=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)
\(10-5x=0\Leftrightarrow5x=10\Leftrightarrow x=2\)
\(x^2-36=0\Leftrightarrow\left(x-6\right)\left(x+6\right)=0\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)
\(25x^2-4=0\Leftrightarrow\left(5x-2\right)\left(5x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}5x-2=0\\5x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{5}\\x=-\frac{2}{5}\end{matrix}\right.\)
\(4x^2-x=0\Leftrightarrow x\left(4x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\4x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{4}\end{matrix}\right.\)
\(4x^2-16=0\Leftrightarrow\left(2x-4\right)\left(2x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}2x-4=0\\2x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
\(4x^3-x=0\Leftrightarrow x\left(4x^2-1\right)=0\Leftrightarrow x\left(2x-1\right)\left(2x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{2}\\x=-\frac{1}{2}\end{matrix}\right.\)
\(9x-4x^3=0\Leftrightarrow x\left(9-4x^2\right)=0\Leftrightarrow x\left(3-2x\right)\left(3+2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\3-2x=0\\3+2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{3}{2}\\x=-\frac{3}{2}\end{matrix}\right.\)
a: Đặt A(x)=0
=>1/2x-3/4x+3/2=0
=>-1/2x=-3/2
hay x=3
b: Đặt B(x)=0
\(\Leftrightarrow x\left(\dfrac{1}{4}x^2-25\right)=0\)
\(\Leftrightarrow x\left(\dfrac{1}{2}x-5\right)\left(\dfrac{1}{2}x+5\right)=0\)
hay \(x\in\left\{0;10;-10\right\}\)
c: Đặt C(x)=0
\(\Leftrightarrow x^2\left(x-2\right)+3\left(x-2\right)=0\)
=>x-2=0
hay x=2
d: Đặt D(x)=0
\(\Rightarrow2x^2-x+10=0\)
\(\text{Δ}=\left(-1\right)^2-4\cdot2\cdot10=-79< 0\)
DO đó: PTVN
Bài 1:
a) \(x^2+7x-8=x^2+2.x.\frac{7}{2}+\frac{49}{4}-\frac{81}{4}\)
\(=\left(x+\frac{7}{2}\right)^2-\frac{81}{4}=0\)
\(\Rightarrow\left(x+\frac{7}{2}\right)^2=\frac{81}{4}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{7}{2}=\frac{9}{2}\\x+\frac{7}{2}=\frac{-9}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-8\end{cases}}\)
Vậy nghiệm của đa thức m(x) là 1 hoặc -8
b) \(\left(x-3\right)\left(16-4x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\16-4x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
Vậy nghiệm của đa thức g(x) là 3 hoặc 4
c) \(5x^2+9x+4=0\)
\(\Rightarrow x^2+\frac{9}{5}x+\frac{4}{5}=0\)
\(\Rightarrow x^2+2x.\frac{9}{10}+\frac{81}{100}-\frac{1}{100}=0\)
\(\Rightarrow\left(x+\frac{9}{10}\right)^2-\frac{1}{100}=0\)
\(\Rightarrow\left(x+\frac{9}{10}\right)^2=\frac{1}{100}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{9}{10}=\frac{1}{10}\\x+\frac{9}{10}=\frac{-1}{10}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-4}{5}\\x=-1\end{cases}}\)
Vậy...
Dạng 1:
a) $4x+9=4x+\frac{9}{4}.4=4(x+\frac{9}{4}\Rightarrow$ Nghiệm là $-\frac{9}{4}$
b) $-5x+6=-5x+(-5).(-\frac{6}{5})=-5(x-\frac{6}{5})\Rightarrow$ Nghiệm là $\frac{6}{5}$
c) $7-2x=-2x+7=-2x+(-2).(-\frac{7}{2})=-2(x-\frac{7}{2})\Rightarrow$ Nghiệm là $\frac{7}{2}$
d) $2x+5=2x+2.\frac{5}{2}=2.(x+\frac{5}{2})\Rightarrow$ Nghiệm là $-\frac{5}{2}$
e) $2x+6=2x+2.3=2(x+3)\Rightarrow$ Nghiệm là -3
g) $3x-\frac{1}{4}=3x-3.(\frac{1}{12})=3(x-\frac{1}{12})\Rightarrow$ Nghiệm là $\frac{1}{12}$
h) $3x-9=3x-3.3=3(x-3)\Rightarrow$ Nghiệm là 3
k) $-3x-\frac{1}{2}=-3x-3.(\frac{1}{6})=-3(x+\frac{1}{6})\Rightarrow$ Nghiệm là $-\frac{1}{6}$
m) $-17x-34=-17x-17.2=-17(x+2)\Rightarrow$ Nghiệm là -2
n) $2x-1=2x+2.(-\frac{1}{2})=3(x-\frac{1}{2})\Rightarrow$ Nghiệm là $\frac{1}{2}$
q) $5-3x=-3x+5=-3x+(-3).(-\frac{5}{3})=-3(x-\frac{5}{3})\Rightarrow$ Nghiệm là $\frac{5}{3}$
p) $3x-6=3x+3.(-2)=3(x-2)\Rightarrow$ Nghiệm là 2
I . Trắc Nghiệm
1B . 2D . 3C . 5A
II . Tự luận
2,a,Ta có: A+(x\(^2\)y-2xy\(^2\)+5xy+1)=-2x\(^2\)y+xy\(^2\)-xy-1
\(\Leftrightarrow\) A=(-2x\(^2\)y+xy\(^2\)-xy-1) - (x\(^2\)y-2xy\(^2\)+5xy+1)
=-2x\(^2\)y+xy\(^2\)-xy-1 - x\(^2\)y+2xy\(^2\)-5xy-1
=(-2x\(^2\)y - x\(^2\)y) + (xy\(^2\)+ 2xy\(^2\)) + (-xy - 5xy ) + (-1 - 1)
= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
b, thay x=1,y=2 vào đa thức A
Ta có A= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
= -3 . 1\(^2\) . 2 + 3 .1 . 2\(^2\) - 6 . 1 . 2 -2
= -6 + 12 - 12 - 2
= -8
3,Sắp xếp
f(x) =9-x\(^5\)+4x-2x\(^3\)+x\(^2\)-7x\(^4\)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x
g(x) = x\(^5\)-9+2x\(^2\)+7x\(^4\)+2x\(^3\)-3x
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
b,f(x) + g(x)=(9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x) + (-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
=(9-9)+(-x\(^5\)+x\(^5\))+(-7x\(^4\)+7x\(^4\))+(-2x\(^3\)+2x\(^3\))+(x\(^2\)+2x\(^2\))+(4x-3x)
= 3x\(^2\) + x
g(x)-f(x)=(-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x) - (9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x)
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x-9+x\(^5\)+7x\(^4\)+2x \(^3\)-x\(^2\)-4x
=(-9-9)+(x\(^5\)+x\(^5\))+(7x\(^4\)+7x\(^4\))+(2x\(^3\)+2x\(^3\))+(2x\(^2\)-x\(^2\))+(3x-4x)
= -18 + 2x\(^5\) + 14x\(^4\) + 4x\(^3\) + x\(^2\) - x
a, M(x)=0<=>2x-\(\dfrac{1}{2}\)=0<=>2x=\(\dfrac{1}{2}\)<=>x=\(\dfrac{1}{4}\)
vậy...
b,N(x)=0<=>4x\(^2\)-1=0<=>4x\(^2\)=1<=>x\(^2\)=\(\dfrac{1}{4}\)=\((\pm\dfrac{1}{2})^2\)
=>x=\(\pm\dfrac{1}{2}\)
vậy ...
c,P(x)=0<=>9x\(^3\)-25x=0<=>x(9x\(^2\)-25)=0
<=>\(\left\{{}\begin{matrix}x=0\\9x^2-25=0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=0\\x=\pm\dfrac{3}{5}\end{matrix}\right.\)
vậy ...
a)M(x)=2x-\(\dfrac{1}{2}\)
2x=\(\dfrac{1}{2}\)=0
2x=0+\(\dfrac{1}{2}\)
x=\(\dfrac{1}{2}\):2
x=\(\dfrac{1}{4}\)
vậy x=\(\dfrac{1}{4}\)là nghiệm của đa thức M(x)