K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2015

                                         Bài giải:

a) \(x^2+7x-8=x^2+8x-x-8\)

                              \(=\left(x^2-x\right)+\left(8x-8\right)\)

                              \(=x\left(x-1\right)+8\left(x-1\right)\)

                              \(=\left(x-1\right)\left(x+8\right)\)

  Mà \(\left(x-1\right)\left(x+8\right)=0\)   \(\Leftrightarrow x-1=0\) ; \(x+8=0\)

                                                    \(\Leftrightarrow x=1\) và \(x=-8\)

b) \(x^2+88-231=0\) \(\Leftrightarrow x^2=143\)

                                             \(\Leftrightarrow x=\sqrt{143}\) hoặc \(x=-\sqrt{143}\)

a: a(x)=x^3+3x^2+5x-18

b(x)=-x^3-3x^2+2x-2

b: m(x)=a(x)+b(x)

=x^3+3x^2+5x-18-x^3-3x^2+2x-2

=7x-20

c: m(x)=0

=>7x-20=0

=>x=20/7

2 tháng 5 2018

a) Ta có : M(x)=x2+7x-8

=x2+8x-x-8

=x.(x+8)-(x+8)

=(x+8).(x-1)

M(x)=0 \(\Leftrightarrow\) (x+8).(x-1)=0

\(\Rightarrow\) (x+8)=0 \(\Rightarrow\) x=-8

\(\Rightarrow\) (x-1)=0 \(\Rightarrow\) x=1

Dựa câu a)

2 tháng 5 2018

a/ m(x)= x2 + 7x - 8 = 0

= x.(7x-8)=0\(\Rightarrow\)\(\left[{}\begin{matrix}x=0\\7x-8=0\end{matrix}\right.\)\(\Rightarrow\)\(\left[{}\begin{matrix}x=o\\7x=8\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{8}{7}\end{matrix}\right.\)

Phần b/ bạn tự làm nha!!!!vui

23 tháng 4 2017

kết quả = -1

5 tháng 4 2016

a)  4-2m +2 = 0 

m = 3

b) thay m =2 vao ta co; 

x2 + 2x +2 = 0 ta tim dc tap nghiem tu giai nhe ng dep

13 tháng 4 2022

Bài 1.

a.\(\left(x-8\right)\left(x^3+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)

b.\(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)

\(\Leftrightarrow4x-3-x-5=30-3x\)

\(\Leftrightarrow4x-x+3x=30+5+3\)

\(\Leftrightarrow6x=38\)

\(\Leftrightarrow x=\dfrac{19}{3}\)

AH
Akai Haruma
Giáo viên
13 tháng 4 2022

Bài 1:

a. $(x-8)(x^3+8)=0$

$\Rightarrow x-8=0$ hoặc $x^3+8=0$

$\Rightarrow x=8$ hoặc $x^3=-8=(-2)^3$

$\Rightarrow x=8$ hoặc $x=-2$

b.

$(4x-3)-(x+5)=3(10-x)$

$4x-3-x-5=30-3x$

$3x-8=30-3x$

$6x=38$
$x=\frac{19}{3}$

7 tháng 8 2016

Câu 1:

a) \(P\left(x\right)=x^5+7x^4-9x^3+\left(-3x^2+x^2\right)-\frac{1}{4}x\)

\(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)

 

\(Q\left(x\right)=-x^5+5x^4-2x^3+\left(x^2+3x^2\right)-\frac{1}{4}\)

\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

b) \(P\left(x\right)+Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)+\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)

\(P\left(x\right)+Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

\(P\left(x\right)+Q\left(x\right)=\left(x^5-x^5\right)+\left(7x^4+5x^4\right)-\left(9x^3+2x^3\right)+\left(-2x^2+4x^2\right)-\frac{1}{4}x-\frac{1}{4}\)

\(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}-\frac{1}{4}\)

 

\(P\left(x\right)-Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)-\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)

\(P\left(x\right)-Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x+x^5-5x^4+2x^3-4x^2+\frac{1}{4}\)

\(P\left(x\right)-Q\left(x\right)=\left(x^5+x^5\right)+\left(7x^4-5x^4\right)+\left(-9x^3+2x^3\right)-\left(2x^2+4x^2\right)-\frac{1}{4}x+\frac{1}{4}\)

\(P\left(x\right)-Q\left(x\right)=2x^5+2x^4-7x^3-6x^2-\frac{1}{4}x+\frac{1}{4}\)

c) \(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)

\(P\left(0\right)=0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\frac{1}{4}\cdot0\)

\(P\left(0\right)=0\)

 

\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

\(Q\left(0\right)=0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\frac{1}{4}\)

\(Q\left(0\right)=-\frac{1}{4}\)

Vậy \(x=0\) là nghiệm của đa thức P(x) nhưng không là nghiệm của đa thức Q(x)

 

 

AH
Akai Haruma
Giáo viên
22 tháng 4 2021

Lời giải:

$M(x)=(6+4x)(-x+2)=0$

\(\Leftrightarrow \left[\begin{matrix} 6+4x=0\\ -x+2=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=-\frac{3}{2}\\ x=2\end{matrix}\right.\)

Vậy nghiệm của đa thức $M(x)$ là $x=\frac{-3}{2}$ và $x=2$

18 tháng 7 2021

\(P\left(x\right)=7x^2-5x-2\) có \(\left(7\right)+\left(-5\right)+\left(-2\right)=0\)nên có 1 nghiệm \(x=1\)

(nghiệm còn lại là \(x=-\frac{2}{7}\))

 \(Q\left(x\right)=\frac{1}{3}x^2+\frac{2}{5}x-\frac{11}{15}\) có \(\left(\frac{1}{3}\right)+\left(\frac{2}{5}\right)+\left(-\frac{11}{15}\right)=0\)nên có 1 nghiệm \(x=1\)

(nghiệm còn lại là \(x=-\frac{11}{5}\))

 \(M\left(x\right)=2,5x^2+3,7x+1,2\) có \(\left(2,5\right)-\left(3,7\right)+\left(1,2\right)=0\)nên có 1 nghiệm \(x=-1\)

(nghiệm còn lại là \(x=-0,48\))