K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:\(B=\frac{8n+3}{4n-10}=\frac{8n-20+23}{4n-10}=\frac{2\left(4n-10\right)+23}{4n-10}=2+\frac{23}{4n-10}\)

B LN khi và chỉ khi 4n-10 là số tự nhiên khác 0 nhỏ nhất,mà 4n-10 là số chắn 

Suy ra B LN khi và chỉ khi 4n-10=2 suy ra n=3

Vậy B đạt GTLN là 13,5 khi và chỉ khi n=3

17 tháng 3 2022

nếu gấp thì....

17 tháng 3 2022

tham khảo :(nha anh :)
Câu hỏi của nguyễn ngọc linh - Toán lớp 6 - Học trực tuyến OLM
 

22 tháng 9 2016

Để B đạt GTLN thì 2B đạt GTLN

Ta có:

\(2B=2.\frac{10n-3}{4n-10}=\frac{20n-6}{4n-10}=\frac{20n-50+44}{4n-10}=\frac{5.\left(4n-10\right)+44}{4n-10}\)

                                      \(2B=\frac{5.\left(4n-10\right)}{4n-10}+\frac{44}{4n-10}=5+\frac{44}{4n-10}\)

Để 2B đạt GTLN thì \(\frac{44}{4n-10}\) đạt GTLN

=> 4n - 10 đạt GTNN

+ Với x < 3 thì 4n - 10 < 0, khi đó \(\frac{44}{4n-10}< 0\)

+ Với \(x\ge3\) thì 4n - 10 > 0, khi đó \(\frac{44}{4n-10}\) > 0 

Mà n nhỏ nhất => n = 3 

Như vậy, ta tìm được n = 3 thỏa mãn 2B đạt GTLN

Thay n = 3 vào B ta có:

\(B=\frac{10.3-3}{4.3-10}=\frac{30-3}{12-10}=\frac{27}{2}\)

Vậy với n = 3 thì B đạt GTNN = \(\frac{27}{2}\)

13 tháng 2 2018

cảm ơn bạn !

15 tháng 11 2023

Vũ™©®×÷|

18 tháng 3 2016

a, Để A thuộc z thì 4n + 1 chia hết cho 2n + 3

Mà 2n + 3 chia hết cho 2n + 3 => 2(2n + 3) chia hết cho 2n + 3

=> 4n + 1 - 2(2n + 3) chia hết cho 2n + 3

=> 4n + 1 - 4n - 6 chia hết cho 2n + 3

=> -5 chia hết cho 2n + 3

=> 2n + 3 thuộc {-1; 1; -5; 5}

=> 2n thuộc {-4; -2; -8; 2}

=> n thuộc {-2; -1; -4; 1}

b, Ta có:

\(A=\frac{4n+1}{2n+3}=\frac{4n+6-5}{2n+3}=\frac{2\left(2n+3\right)-5}{2n+3}=2-\frac{5}{2n+3}\)

+ Để A nhỏ nhất thì \(\frac{5}{2n+3}\)lớn nhất => 2n + 3 nhỏ nhất dương (Vì 2n + 3 âm thì 5/2n+3 âm, 2n + 3 khác 0)

=> 2n + 3 = 1

=> 2n = -2

=> n = -1

+ Lớn nhất xét tương tự

8 tháng 2 2020

a) Để A là phân số thì 

\(2n\ne0\Leftrightarrow x\ne0\)

b) \(A=\frac{n+10}{2n}=\frac{1}{2}+\frac{10}{2n}\)

c) \(A=\frac{n+10}{2n}\)

\(\Leftrightarrow A=\frac{1}{2}+\frac{5}{n}\le\frac{1}{2}\)

Để A đạt GTLN 

\(\Leftrightarrow\frac{5}{n}=\frac{1}{2}\)

\(\Leftrightarrow n=10\left(T/m\right)\)

Vậy...............


 

Trả lời

BẠn CTV kia trả lời đúng rồi nhé

mọi người tham khảo nha

study well