K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2015

Với x= 0 là nghiệm của pt

Với x=-1 là ngiệm của pt

Với x=1 không là nghiệm của pt

Với x khác ba già trị trên thì

Nên x thuộc Z ; x2>x

Ta có: x2+x+1 > 0 với mọi x thuộc Z nên x+ x+ x + 1 >x3

Mặt khác: 2x2+2x>0 nên (x+1)3>x+ x+ x + 1

nên  (x+1)3>x+ x+ x + 1 >x3   khong có gt của x.

Vậy x=-1 hoặc x=0

NV
21 tháng 1 2021

1.

Gọi \(d=ƯC\left(2n^2+3n+1;3n+1\right)\)

\(\Rightarrow2n^2+3n+1-\left(3n+1\right)⋮d\)

\(\Rightarrow2n^2⋮d\Rightarrow2n\left(3n+1\right)-3.2n^2⋮d\)

\(\Rightarrow2n⋮d\Rightarrow2\left(3n+1\right)-3.2n⋮d\Rightarrow2⋮d\Rightarrow\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)

\(d=2\Rightarrow3n+1=2k\Rightarrow n=2m+1\)

\(\Rightarrow n\) lẻ thì A không tối giản

\(\Rightarrow n\) chẵn thì A tối giản

NV
21 tháng 1 2021

2.

Giả thiết tương đương:

\(xy^2+\dfrac{x^2}{z}+\dfrac{y}{z^2}=3\)

Đặt \(\left(x;y;\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow a^2c+b^2a+c^2b=3\)

Ta có: \(9=\left(a^2c+b^2a+c^2b\right)^2\le\left(a^4+b^4+c^4\right)\left(c^2+a^2+b^2\right)\)

\(\Rightarrow9\le\left(a^4+b^4+c^4\right)\sqrt{3\left(a^4+b^4+c^4\right)}\)

\(\Rightarrow3\left(a^4+b^4+c^4\right)^3\ge81\Rightarrow a^4+b^4+c^4\ge3\)

\(\Rightarrow M=\dfrac{1}{a^4+b^4+c^4}\le\dfrac{1}{3}\)

\(M_{max}=\dfrac{1}{3}\) khi \(\left(a;b;c\right)=\left(1;1;1\right)\) hay \(\left(x;y;z\right)=\left(1;1;1\right)\)

25 tháng 2 2016

Lớp 6 mà!

25 tháng 2 2016

Vì n là số tự nhiên có 2 chữ số thì \(10\le n\le99\)

=>\(21\le2n+1\le199\)

Vì 2n+1 là số chính phương

=>2n+1=(16;25;36;499;64;81;100;121;169)

n=(12;24;40;60;84)

=>3n+1=(37;73;121;181;253)

Mà 3n+1 là số chính phương

=>3n+1=121

=>n=40

8 tháng 10 2020

G/s \(n+26=a^3\) và \(n-11=b^3\) với a,b là các STN

\(\Rightarrow a^3-b^3=n+26-n+11\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)=37\)

Vì \(\hept{\begin{cases}a-b>0\\a^2+ab+b^2\ge0\end{cases}\left(\forall a,b\right)}\)

Ta có 2 TH sau:

Nếu \(\hept{\begin{cases}a-b=1\\a^2+ab+b^2=37\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b+1\\a^2+ab+b^2=37\end{cases}}\)

\(\Leftrightarrow\left(b+1\right)^2+\left(b+1\right)b+b^2-37=0\)

\(\Leftrightarrow3b^2+3b-36=0\)

\(\Leftrightarrow\left(b-3\right)\left(b+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}b=3\left(tm\right)\\b=-4\left(ktm\right)\end{cases}}\Rightarrow b=3\Rightarrow a=4\)

\(\Rightarrow n=38\)

Nếu \(\hept{\begin{cases}a-b=37\\a^2+ab+b^2=1\end{cases}}\)

\(\Leftrightarrow\left(b+37\right)^2+\left(b+37\right)b+b^2=1\)

\(\Leftrightarrow b^2+74b+1369+b^2+37b+b^2-1=0\)

\(\Leftrightarrow3b^2+111b+1368=0\)

\(\Leftrightarrow b^2+37b+456=0\)

\(\Leftrightarrow\left(b^2+37b+\frac{1369}{4}\right)+\frac{455}{4}=0\)

\(\Leftrightarrow\left(b+\frac{37}{2}\right)^2=-\frac{455}{4}\)

=> vô lý

Vậy n = 38

21 tháng 11 2016

giả sử n^2+n+2=k^2=> k^2>n^2<==>k>n (1) 
ta có n^2+n-2=k^2-4 
<==>(n-1)(n+2)=(k-2)(k+2) (2) 
@ nếu n=1 , k=2, đúng 
@ nếu n khác 1 
ta có n+2<k+2 (từ (1)) 
==> để (2) xẩy ra thì: n-1>k-2 
mà từ (1) ta có k-1>n-1 
nên: k-1>n-1>k-2 
do k-1 và k-2 hai hai số tự nhiên liên tiếp nên không thể tồn tại số tự nhiên nằm giữa chúng (n-1) 
vậy chỉ có n=1 là nghiệm!

22 tháng 11 2016

thanks nha

7 tháng 12 2015

 

Đặt  2n +1 =a2

    3n +4 =b2

2b2 -3a2 =6n +8 -6n -3 =5

2(b2 -a2) = a2 +5  => a2 là số chính phưng lẻ  < 200  ( 2n +1 < 200)

+a2 =25 => a =5 => n =12  khi đó  3.12 +4 =40  =b2 loại

+a2 = 49 => n =24 => 24.3 +4 =76 =b2 loại

+a2 =81 => n =40 => 40.3 +4 =124 =b2 loại

+a2 =121 => n =60 => 60.3 +4 =184 = b2 loại

+a2 =169 => n =84 => 84.3 +4 =256 =162 =b2 => b =16 (TM)

Vậy  n =84

3 tháng 12 2015

ko có bạn nhé
chỉ có 2n + 1 và 3n + 1 thôi