K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2017

Bài 1:
\(A=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)

\(\Rightarrow2A=2+\frac{3}{2^2}+\frac{4}{2^3}+....+\frac{100}{2^{99}}\)

\(\Rightarrow2A-A=\left(2+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{100}{2^{99}}\right)-\left(1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}\right)\)

\(\Rightarrow A=\left(2-1\right)+\frac{3}{2^2}+\left(\frac{4}{2^3}-\frac{3}{2^3}\right)+...+\left(\frac{100}{2^{99}}-\frac{99}{2^{99}}\right)-\frac{100}{2^{100}}\)

\(\Rightarrow A=1+\frac{3}{2^2}+\left(\frac{1}{2^3}+...+\frac{1}{2^{99}}\right)-\frac{100}{2^{100}}\)

Bài 2:
Giải:
Ta có: \(2n-3⋮n+1\)

\(\Rightarrow\left(2n+2\right)-5⋮n+1\)

\(\Rightarrow2\left(n+1\right)-5⋮n+1\)

\(\Rightarrow5⋮n+1\)

\(\Rightarrow n+1\in\left\{1;-1;5;-5\right\}\)

\(\Rightarrow n\in\left\{0;-2;4;-6\right\}\)

Vậy ...

3 tháng 11 2018

Đặt \(A=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)

\(2A=2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}\)

\(2A-A=\left(2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}\right)-\left(1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\right)\)

\(A=1+\frac{3}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{100}{2^{100}}\)

\(A=\frac{7}{4}-\frac{100}{2^{100}}+\left(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\right)\)

Đặt \(B=\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\)

\(2B=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}\)

\(2B-B=\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}\right)-\left(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\right)\)

\(B=\frac{1}{2^2}-\frac{1}{2^{99}}\)

\(\Rightarrow\)\(A=\frac{7}{4}-\frac{100}{2^{100}}+B=\frac{7}{4}-\frac{100}{2^{100}}+\frac{1}{2^2}-\frac{1}{2^{99}}=2-\frac{1}{2^{99}}-\frac{100}{2^{100}}=\frac{2^{101}-102}{2^{100}}\)

Vậy \(A=\frac{2^{101}-102}{2^{100}}\)

Chúc bạn học tốt ~ 

3 tháng 11 2018

Thank you very much !

20 tháng 6 2016

undefined

20 tháng 6 2016

a) Câu hỏi của Nguyễn Khánh Ly - Toán lớp 7 - Học toán với OnlineMath

b) 2n - 3 = 2n + 2 - 5 chia hết cho n + 1

<=> 5 chia hết cho n + 1

<=> n + 1 thuộc Ư(5) = {1;5}

<=> n thuộc {0;4}

11 tháng 3 2019

Truy cập link để nhận thẻ cào 50k free :

http://123link.vip/7K2YSHxh

Nhanh không cả hết !

11 tháng 3 2019

\(A=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)

\(\Rightarrow2A=2+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{100}{2^{99}}\)

\(\Rightarrow A=1+\frac{3}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{100}{2^{100}}\)

Đặt   \(B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

    \(\Rightarrow2B=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)

\(\Rightarrow B=2-\frac{1}{2^{99}}\Rightarrow A=2-\frac{1}{2^{99}}-\frac{100}{2^{100}}\)