Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Giả sử tồn tại số nguyên n sao cho \(n^2+2002\)là số chình phương.
\(\Rightarrow n^2+2002=a^2\left(a\inℕ^∗\right)\)
\(\Rightarrow a^2-n^2=2002\)
\(\Rightarrow a^2+an-an-n^2=2002\)
\(\Rightarrow a\left(a+n\right)-n\left(a+n\right)=2002\)
\(\Rightarrow\left(a-n\right)\left(a+n\right)=2002\)
Mà \(2002⋮2\)\(\Rightarrow\orbr{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}\left(1\right)}\)
Ta có : \(\left(a+n\right)-\left(a-n\right)=-2n\)
\(\Rightarrow\)\(a-n\)và \(a+n\)có cùng tính chẵn lẻ \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\): \(\Rightarrow\hept{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}}\)
Vì 2 là số nguyên tố \(\Rightarrow\left(a-n\right)\left(a+n\right)⋮4\)
mà 2002 không chia hết cho 4
\(\Rightarrow\)Mâu thuẫn
\(\Rightarrow\)Điều giả sử là sai
\(\Rightarrow\)Không tồn tại số nguyên n thỏa mãn đề bài
Ta có 1971 chia 4 dư 3
Mà số chính phương là số chia hết cho 4 hoặc chia 4 dư 1
=>23n chia 4 dư 1 hoặc dư 2
23n chia 4 dư 2 <=>23n là số chẵn(vô lí)
=>23n chia 4 dư 1
Ta có:23 = 3(mod 4)
23n=3n(mod 4)
=>3n chia 4 dư 1
Xét n nhỏ nhất để 3n chia 4 dư 1 là 2(32=9 chia 4 dư 1)
=>3n là bội của 9(n khác 0)
=> n là số chẵn khác 0
Vậy n chẵn và khác 0 thì...