Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{n\left(n+1\right)}{2}+\frac{\left(n+1\right)\left(n+2\right)}{2}\)
\(=\frac{n\left(n+1\right)+\left(n+1\right)\left(n+2\right)}{2}\)
\(=\frac{\left(n+1\right)\left(n+n+2\right)}{2}\)
\(=\frac{\left(n+1\right)\cdot2\cdot\left(n+1\right)}{2}\)
\(=\left(n+1\right)^2\)
=> ĐPCM
a) có ( 2x + 3) : (x +1) = (2x + 2 + 1): (x+1)
= 2 + 1: (x+1)
Để biểu thức đã cho là số nguyên thi 1: ( x+1) phải nguyên
=> ( x +1) thuộc ư(1) =( -1,1)
=> x=-2 hoặc x=0
Ta có:
\(A=n^2\left(n^2+n+1\right)\)
Để A là số chính phương thì \(n^2=n^2+n+1\)(1) hoặc \(n=n\left(n^2+n+1\right)\)(2) hoặc \(1=n^4+n^3+n^2\)(3)
\(\left(1\right)\Leftrightarrow n=-1\left(tm\right)\)
\(\left(2\right)\Leftrightarrow\orbr{\begin{cases}n=0\\n=-1\end{cases}}\)
\(\left(3\right)\Leftrightarrow n=-1\)
Vậy n=0 hoặc n=-1