Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để P đạt giá trị nguyên => 4n-1\(⋮\)2n-3
=> 2.(2n-3)+5\(⋮\)2n-3
Mà 2.(2n-3)\(⋮\)2n-3
=>5\(⋮\)2n-3
=>2n-3\(\in\)Ư(5)
lập bảng
2n-3 | 1 | -1 | 5 | -5 |
n | 2 | 1 | 4 | -1 |
Vậy n \(\in\){-1;1;2;4}
b)Để P đạt giá trị nhỏ nhất => 2n-3 phải là số tự nhiện nhỏ nhất khác 0
TH1 2n-3=1
2n=1+3
2n=4
n=4:2
n=2( chọn)
Vậy n=2
a, \(\frac{4n+1}{2n-3}=\frac{2n-3+2n+4}{2x-3}\)
= \(\frac{2n-3}{2n-3}+\frac{2n+4}{2n-3}\) = \(1+\frac{2n-3+7}{2n-3}=1+\frac{7}{2n-3}\)
để B tối giản thì 7 phải chia hết cho 2n - 3
=> 2n - 3 thuộc Ư(7)
=> 2n - 3 = { 1 , -1 , 7 , -7 }
=> 2n = { 4 , 2 , 10 , -4 }
=> n ={ 2 , 1 ,5 ,-2 }
Đừng bỏ cuộc
\(y=\frac{4n+6+3}{2n+3}=\frac{2\left(2n+3\right)+3}{2n+3}=2+\frac{3}{2n+3}\). vì x thuộc Z => \(\frac{3}{2n+3}\le3\) với mọi n => \(y\le2+3=5\)
=> GTLN của y=5 <=>2n+3=1 <=> n=-1
Ta có:B=(4n+9)/(2n+3) =(2(2n+3)+3)/(2n+3)=2+(3/2n+3)
B lớn nhất khi và chỉ khi 3/2n+3 lớn nhất <=> 2n+3 nhỏ nhất (2n+3 >0)
n thuộc Z=> 2n+3 thuộc Z => 2n+3=1<=> n=-1
vậy,n=-1