Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{3}{n-2}\in Z\)
\(\Rightarrow n-2\inƯ\left(3\right)\)
\(Ư\left(3\right)=\){\(-3;-1;1;3\)}
- Nếu x - 2 = -3 \(\Rightarrow\)x = -1.
- Nếu x -2 = -1 \(\Rightarrow\)x = 1.
- Nếu x - 2 = 1 \(\Rightarrow\)x = 3
- Nếu x - 2 = 3 \(\Rightarrow\)x = 5.
\(\Rightarrow x\in\){ \(-1;1;3;5\)}
b, Để \(\frac{n}{n-1}\in Z\)
\(\Rightarrow\)\(n-1\ne0+1\Leftrightarrow n\ne1\)
\(\Rightarrow n-1\inƯ\left(n\right)\)...
\(\frac{2n-4}{n-1}=\frac{2n-2+6}{n-1}=\frac{2\left(n-1\right)+6}{n-1}=\frac{2\left(n-1\right)}{n-1}+\frac{6}{n-1}=2+\frac{6}{n-1}\)
Để phân số có giá trị nguyên \(\Leftrightarrow n-1\inƯ\left(6\right)=\left\{1;2;3;6;-1;-2;-3;-6\right\}\)
Ta có :
n-1 | 1 | 2 | 3 | 6 | -1 | -2 | -3 | -6 |
n | 2 | 3 | 4 | 7 | 0 | -1 | -2 | -5 |
Vậy ...
a ) Để \(\frac{n+3}{n-2}\) là số nguyên âm <=> n + 3 chia hết cho n - 2
<=> n - 2 + 5 chia hết cho n - 2
<=> 5 chia hết cho n - 2
<=> n - 2 thuộc Ư ( 5 )
Ư ( 5 ) = { + 1 ; + 5 }
n - 2 | 1 | - 1 | 5 | - 5 |
n | 3 | 1 | 7 | - 3 |
\(\frac{n+3}{n-2}\) | 6/1 | 4/-1 | 10/5 | 0 |
Vậy để n + 3 / n - 2 là số âm thì n = 1
Câu b và c làm tương tự
Mk làm mẫu cho 1 phần rùi các câu còn lại làm tương tự nhé
a) \(\frac{3n-2}{n-3}=3+\frac{7}{n-3}\)
Để \(\frac{3n-2}{n-3}\)nguyên thì \(\frac{7}{n-3}\)nguyên
hay \(n-3\)\(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta lập bảng sau:
\(n-3\) \(-7\) \(-1\) \(1\) \(7\)
\(n\) \(-4\) \(2\) \(4\) \(10\)
Vậy....
a, \(ĐK:\text{ }n-2\ne0\Leftrightarrow n\ne2\)
b, \(A=\frac{3}{n-2};\text{ }n=-2\)
\(\Rightarrow A=\frac{3}{-2-2}=\frac{3}{-4}\)
\(A=\frac{3}{n-2}\text{; }n=0\)
\(\Rightarrow A=\frac{3}{0-2}=\frac{3}{-2}\)
\(A=\frac{3}{n-2};\text{ }n=5\)
\(\Rightarrow A=\frac{3}{5-2}=\frac{3}{3}=1\)
c, \(A=\frac{3}{n-2}=1\Leftrightarrow n-2=\frac{3}{1}\)
\(\Rightarrow n-2=3\)
\(\Rightarrow n=3+2\)
\(\Rightarrow n=5\)
\(A=\frac{3}{n-2}=\frac{1}{2}\Leftrightarrow n-2=3:\frac{1}{2}\)
\(\Rightarrow n-2=6\)
\(\Rightarrow n=6+2\)
\(\Rightarrow n=8\)
d, \(A\inℤ\text{ }\Leftrightarrow\text{ }3⋮n-2\)
\(\Rightarrow n-2\inƯ\left(3\right)\)
\(\Rightarrow n-2\in\left\{-1;1;-3;3\right\}\)
\(\Rightarrow n\in\left\{1;3;-1;5\right\}\)
a)để A là phân số thì n-2 phải khác 0 =>n phải khác 2
b)+)n=-2
=>A=\(\frac{3}{-2-2}\)=\(\frac{3}{-4}\)
+)n=0
=>A=\(\frac{3}{0-2}=\frac{3}{-2}\)
+)n=5
=>A=\(\frac{3}{5-2}=\frac{3}{3}=1\)
c) theo như kết quả phần b thì để A=1 thì n phải =5
để A=\(\frac{1}{2}\)thì \(\frac{3}{n-2}=\frac{1}{2}\)=>\(\frac{3}{n-2}=\frac{3}{6}\)=>n-2=6=>n=6+2=>n=8
để A thuộc Z thì n-2 phải <0 =>n phải bé hơn 2 để n thuộc Z
A=n+3 chia hết cho n+1
mà n+3 =(n+1)+2
vì n+1 chia hết cho n+1
nên A chia hết cho n+1
khi2chia hết cho n+1
suy ra n+1 thuộc ước của 2
suy ra n+1 thuộc {1;2}
mà n thuộc Z Suy ra n thuộc { 0;1}
Câu 2 dựa theo cách trên mà tự làm
\(\frac{n+3}{n+1}=\frac{n+1+2}{n+1}=\frac{n+1}{n+1}+\frac{2}{n+1}=1+\frac{2}{n+1}\)
Để \(A\in Z\)<=> n + 1 \(\in\)Ư(2) = {-1;1;-2;2}
n + 1 | -1 | 1 | -2 | 2 |
n | -2 | 0 | -3 | 1 |
\(\frac{3n-5}{n-4}=\frac{3n-12-17}{n-4}=\frac{3\left(n-4\right)-17}{n-1}=\frac{3\left(n-4\right)}{n-4}-\frac{17}{n-4}\)
Để \(B\in Z\) <=> n - 4 \(\in\)Ư(17) = {1;-1;17;-17}
n - 4 | 1 | -1 | 17 | -17 |
n | 5 | 3 | 21 | -13 |
Vì (2n+1)/(n+2) có giá trị nguyên suy ra 2n+1 chia hết cho n+1 suy ra 2(n+1)-1 chia hết cho n+1 suy ra 1 chia hết cho n+1 suy ra n+1 thuộc ước của 1 và =1;-1 suy ra n=0 hoặc -2
n2 -1 khác 0 nên n khác 1 và -1
Vì n-3 < n2 -1 nếu n2 -1 > 1 và n2 -1<-1
Mà n-3 phải < n2 -1 thì Q mới thuộc Z
Vậy n2-1=1 hoặc -1
=> n2 = 2 hoặc 0
Vì n thuộc Z nên n2 =2 không đúng.
Vậy n2=0 => n=0