Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: n+1 chia hết cho 165
=> n+1 thuộc B(165) = { 0 ; 165;330;495;660.....}
=> n = { -1 ; 164 ; 329 ; 494;659;............}
Vì n chia hết cho 21
=> n =
a) Tổng ba số tự nhiên liên tiếp có dạng như sau:
(1k+1 )+ (1k+ 2) + (1k + 3) = 1k6
Mà 1k6 chia hết cho 3 (6 chia hết cho 3)
Nên tổng ba số tự nhiên liên tiếp chia hết cho 3
b) Tổng bốn số tự nhiên liên tiếp có dạng:
(1k + 1 ) + (1k + 2) + (1k + 3) + (1k + 4) = 1k10
1k10 không chia hết cho 4 nên tổng bốn số tự nhiên liên tiếp ko chia hết cho 4
16)
a) (15 + 7n) chia hết cho n
Theo quy tắc thì nếu (a + b) chia hết cho k thì a và b đều chia hết cho k
Vậy 15 chia hết cho 5 (bỏ đi 7n vì ở đây vẫn là n ẩn 0
Suy ra n thuộc U(15)
Ư(15) = { 1 ; 3 ; 5 ; 15 }
Thử lần lượt các số trên với 7n: bằng cách đem: 7n chia n
Ta có: 71 chia hết cho 1 ( 1 là n) => Chọn
73 không chia hết cho 3 (3 là n) => Bỏ chọn
75 chia hết cho 5 ..tương tự như trên.. => Chọn
7(15) vượt quá số có 2 chữ số => Bỏ chọn
Vậy n được là: 1 và 5
b) Tương tự như trên
17) 66a + 55b = 111 011?
Nhận xét: 111 011? là số có 7 chữ số
Mà trong khi 66a + 55b đều là số có 2 chữ số => Tổng trên tối đa là 4 chữ số.
4 < 7 => Không thể tìm được số tự nhiên a và b để thỏa mãn yêu cầu trên
17
Vì 66a + 55b = 111 011
11.6a+11.5b=111011
11.(6a+5b) =111011
11*11ab=111011
mà 111011 không chia hết cho 11
==>Không thể tìm được a và b
https://olm.vn/hoi-dap/detail/1317447057.html " VÀO ĐI MAN BÀI I HỆT YOU IK "
Vì cộng thêm 1 thì n chia hết cho 2, cộng thêm 2 thì n chia hết cho 3, cộng thêm 3 thì n chia hết cho 4, cộng thêm 4 thì n chia hết cho 5, cộng thêm 5 thì n chia hết cho 6, cộng thêm 6 thì n chia hết cho 7 nên ta có : n chia cho 2 dư 1, n chia cho 3 dư 2, n chia cho 4 dư 3, n chia cho 5 dư 4, n chia cho 6 dư 5 và n chia cho 7 dư 6
\(\Rightarrow\)n-1\(⋮\)2, n-2\(⋮\)3, n-3\(⋮\)4, n-4\(⋮\)5, n-5\(⋮\)6 và n-6\(⋮\)7
\(\Rightarrow\)n-1+2\(⋮\)2, n-2+3\(⋮\)3, n-3+4\(⋮\)4, n-4+5\(⋮\)5, n-5+6\(⋮\)6 và n-6+7\(⋮\)7
\(\Rightarrow\)n-1 chia hết cho cả 2,3,4,5,6,7
\(\Rightarrow\)n-1\(\in\)BC(2,3,4,5,6,7)
Ta có : 2=2
3=3
4=22
5=5
6=2.3
7=7
\(\Rightarrow\)BCNN(2,3,4,5,6,7)=22.3.5.7=420
\(\Rightarrow\)BC(2,3,4,5,6,7)=B(420)={0;420;840;1260;...}
Mà 1<n
n\(\in\){421;841;1261;...}
Vậy n\(\in\){421;841;1261;...}
a, Tìm cặp số tự nhiên x,y biết (x-2) .(y + 7) =17
b,Tìm số tự nhiên n để ( 3n+16) chia hết cho (n+4)
ta có y+7 là số tự nhiên lớn hơn 7 và là ước của 17
thế nên \(\hept{\begin{cases}y+7=17\\x-2=1\end{cases}\Leftrightarrow\hept{\begin{cases}y=10\\x=3\end{cases}}}\)
b. ta có : \(3n+14=3\times\left(n+4\right)+2\) chia hết cho n+4 khi 2 chia hết cho n+4
mà n là số tự nhiên nên n+4 > 3 thế nên không tồn tại số tự nhiên thỏa mãn
n2 + n + 4 chia hết cho n - 1
n2 - n + 2n + 4 chia hết cho n - 1
n.(n - 1) + 2n + 4 chia hết cho n - 1
2n + 4 chia hết cho n - 1
2n - 2 + 6 chia hết cho n - 1
2.(n - 1) + 6 chia hết cho n - 1
=> 6 chia hết cho n - 1
=> n - 1 thuộc Ư(6) = {1 ; 2 ; 3 ; 6}
Ta có bảng sau :
n - 1 | 1 | 2 | 3 | 6 |
n | 2 | 3 | 4 | 7 |
n^2 + n + 4 chia hết cho n-1
=> n^2-n+2n-2+6 chia hết cho n-1
=> n(n-1) + 2(n-1) + 6 chia hết cho n-1
Mà n(n-1) + 2(n-1) chia hết cho n-1
Nên 6 chia hết cho n-1
Suy ra n-1 thuộc Ư(6)
Có Ư(6) = {1;-1;2;-2;3;-3;6;-6}
=> n-1 thuộc {1;-1;2;-2;3;-3;6;-6}
=> n thuộc {2;0;3;-1;4;-2;7;-5}
Ta có: 5n+11 chia hết cho n+1
=> 5n+5+6 chia hết cho n+1
=> 5.(n+1)+6 chia hết cho n+1
Mà 5.(n+1) chia hết cho n+1
=> 6 chia hết cho n+1
=> n+1 \(\in\)Ư(6)={1; 2; 3; 6}
=> n \(\in\){0; 1; 2; 5}.
5n + 11 chia hết cho n+1
5n+11 = 5(n+1)+6 chia hết cho n+1
Ta có : 5(n+1)+6 chia hết cho n + 1
6 chia hết cho n+1
Suy ra n+1 thuộc ƯC(6)={1;2;3;6}
n+1=1 suy ra n=0
n+1=2 suy ra n=1
n+1=3 suy ra n=2
n+1=6 suy ra n=6
n thuộc {0;1;2;5}
n=4
**** mik nha !!
Vì 4n + 1 ⋮ 17 <=> 4n + 1 ∈ Ư(17) = { +1; +17 }
Ta có bảng sau :
Vậy n = - 2