Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có : \(12n^2-5n-25\)
\(=\left(4n+5\right)\left(3n-5\right)\)
Vì \(12n^2-5n-25\)là số nguyên tố
\(\Rightarrow\)Nó chỉ có 2 ước nguyên dương là 1 và chính nó
mà \(4n+5>3n-5\forall n\inℕ\)
\(\Rightarrow3n-5=1\)
\(\Rightarrow n=2\)
Thử lại : \(\left(2.4+5\right)\left(2.3-1\right)=13\)(là số nguyên tố)
Vậy \(n=2\)
b)Tương tự nhé cậu , ta tìm được \(n=0\)
a) \(A=12n^2-5n-25\)
\(=12n^2+15n-20n-25\)
\(=3n\left(4n+5\right)-5\left(4n+5\right)\)
\(=\left(3n-5\right)\left(4n+5\right)\)
Do số nguyên tố khi phân tích thành nhân tử bao giờ cũng chỉ gồm 1 và chính nó
nên A là số nguyên tố thì: \(\orbr{\begin{cases}3n-5=1\\4n+5=1\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}n=2\\n=-1\end{cases}}\)
do n là số tự nhiên nên \(n=2\)
thử lại: n=2 thì A = 13 là số nguyên tố
Vậy n = 2
b) \(B=8n^2+10n+3\)
\(=8n+6n+4n+3\)
\(=2n\left(4n+3\right)+\left(4n+3\right)\)
\(=\left(2n+1\right)\left(4n+3\right)\)
Để B là số nguyên tố thì: \(\orbr{\begin{cases}2n+1=1\\4n+3=1\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}n=0\\n=-\frac{1}{2}\end{cases}}\)
Do n là số tự nhiên nên n = 0
Thử lại: \(n=0\)thì \(B=3\)là số nguyên tố
Vậy \(n=0\)
tìm số tự nhiên n để giá trị sau là số nguyên tố
a) 12n2-5n-25
b) 8n2+10n+3
c) \(\dfrac{n^2+3n}{4}\)
\(12n^2-5n-25=\left(3x-5\right)\left(4x+5\right)\)
Ta có: \(\left(3x-5\right)\left(4x+5\right)⋮3x-5;4x+5\)
Ta có: \(\left(3x-5\right)\left(4x+5\right)\) có 2 ước,nên 1 ước sẽ phải là 1 và 1 ước sẽ là chính số nguyên tố đó
Nhận xét: \(4x+5>0\Rightarrow3x-5=1\Rightarrow x=2\)
Vậy...
a) ta có: A=\(\frac{21x+3}{7x+1}=\frac{3\left(7x+1\right)}{7x+1}=3\) với x khác -1/7
Vâỵ vs mọi gt trị của x thuộc Z (x khác -1/7) thì A mang gt nguyên
b)ta có: B=\(\frac{3x+2}{2x+3}\) => 2B=\(\frac{3\left(2x+3\right)-5}{2x+3}=3-\frac{5}{2x+3}\)
để B có giá trị nguyên <=>2B có gt nguyên <=> \(\frac{5}{2x+3}\) có gt nguyên<=> 2x+3 là các ước nguyên của 5
Ư(5)={-5 ; -1 ; 1 ; 5}
ta có bảng:
2x+3 | -5 | -1 | 1 | 5 |
x | -4 | -2 | -1 | 1 |
Vậy với x={-4 ; -2 ; -1 ; 1} thì B nguyên
Ta có A=(n−1)(n2−3n+1)A=(n−1)(n2−3n+1). Với n = 0, 1, 2 thì A không phải là số nguyên tố. Với n = 3 thì A = 2 là số nguyên tố.
Với n>3⇒n2−3n+1=n(n−3)+1>1n>3⇒n2−3n+1=n(n−3)+1>1 và n - 1 > 2 nên A là hợp số. Vậy n = 3 thỏa mãn bài toán
Bạn kham khảo nhé.
a có: A=n3−4n2+4n−1A=n3−4n2+4n−1=(n-1)(n^2+n+1)-4n(n-1) =(n-1)(n^2-3n+1)$
Đến đây giải từng số bằng 1, số còn lại là SNT, rồi kết luận.
Bạn kham khảo nhé.