Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{15}{n}\)nhận giá trị nguyên <=>n thuộc Ư(15)
<=>n thuộc {1; -1; 3; -3; 5; -5; 15; -15}
Vậy \(\frac{15}{n}\)đạt giá trị nguyên <=>n thuộc {1; -1; 3; -3; 5; -5; 15; -15}
Để 3 phân số trên nhận giá trị nguyên thì
n\(\in\)Ư(15)=>n={\(\pm\)1;\(\pm\)3;\(\pm\)5;\(\pm\)15}
n+2\(\in\)Ư(12)
2n-5\(\in\)Ư(6)
=>n=\(\pm\)1;\(\pm\)3,...
15/n=>n thuộc ước 15 mà ước 15={1;3;5;15}Vậy lần lượt=1;3;5;15
16/n+1=>n+1 thuộc ước 16 mà ước 16 ={1;2;4;8;16}Vậyn lần lượt =0;1;3;7;15
6/2n-5=>2n-5 thuộc ước 6 mà ước 6={1;2;3;6}Vậy n lần lượt=3;loại;4;loại
Nếu n thuộc N thì như trên
15/n=>n thuộc ước nguyên 15
12/n+1=>n+1 thuộc ước nguyên 12
6/2n-5=>2n-5 thuộc ước nguyên 6
\(\frac{15}{n}\in\)Z => 15 chia hết cho n => n \(\in\) Ư(15) = {-1;1;-3;3;-5;5;-15;15} (1)
\(\frac{12}{n+2}\in\)Z => 12 chia hết cho n + 2 => n + 2 \(\in\)Ư(12) = {-1;1;-2;2;-3;3;-4;4;-6;6;-12;12}
=> n \(\in\){-3;-1;-4;0;-5;1;-6;2;-8;4;-14;10} (2)
\(\frac{6}{2n-5}\in\)Z => 6 chia hết cho 2n - 5 => 2n - 5 \(\in\)Ư(6) = {-1;1;-2;2-3;3;-6;6}
=> 2n \(\in\){4;6;3;7;2;8;-1;11}, mà 2n chia hết cho 2
=> 2n \(\in\){4;6;2;8} => n \(\in\){2;3;1;4} (3)
Từ (1), (2), (3) => n \(\in\){1;3;4}
Vì \(n\inℕ\Rightarrow2n+5\ge5\). Lại có \(\frac{6}{2n+5}\)là số nguyên nên suy ra \(2n+5=6\Leftrightarrow n=\frac{1}{2}\)(không thỏa mãn) .
Vậy không tồn tại số tự nhiên \(n\) thỏa mãn yêu cầu bài toán.