K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2021
Thủy uuhviyvihv ynm
29 tháng 10 2017

 Tìm n ∈  N để:( 4n+ 3) và 2n+ 3 nguyên tố cùng nhau và  2n + 3 4n + 3  tối giảm. b) 7n+ 13 và 2n+ 4 nguyên tố cùng nhau. b, giả sử d = ( 7n +13 ; 2n + 4)  ta có 7n + 13 = 3.( 2n +4 ) + (n + 1)  2n + 4 = 2.(n +1) + 2  => d = ( n +1; 2)  Để 7n + 13 và 2n + 4 là số nguyên tố cùng nhau thì d = 1  => n + 1 không chia hết cho 2  => n+ 1 = 2k + 1 , k thuộc N  => n = 2k  Vậy với n = 2k thì 7n + 13 và 2n + 4 nguyên tố cùng nhau

29 tháng 10 2017

b, giả sử d = ( 7n +13 ; 2n + 4) 
ta có 7n + 13 = 3.( 2n +4 ) + (n + 1) 
2n + 4 = 2.(n +1) + 2 
=> d = ( n +1; 2) 
Để 7n + 13 và 2n + 4 là số nguyên tố cùng nhau thì d = 1 
=> n + 1 không chia hết cho 2 
=> n+ 1 = 2k + 1 , k thuộc N 
=> n = 2k 
Vậy với n = 2k thì 7n + 13 và 2n + 4 nguyên tố cùng nhau

a)+)Gọi d là số nguyên tố và là ƯCLN(4n+3,2n+3)

=>4n+3\(⋮\)d;2n+3\(⋮\)d

+)4n+3\(⋮\)d(1)

+)2n+3\(⋮\)d

=>2.(2n+3)\(⋮\)d

=>4n+6\(⋮\)d(2)

Từ(1) và (2) 

=>(4n+6)-(4n+3)\(⋮\)d

=>4n+6-4n-3\(⋮\)d

=>3\(⋮\)d

Mà d nguyên tố

=>d=3

=>4n+3\(⋮\)d

=>4n+3\(⋮\)3

=>4n+3=3k(k\(\in\)N)

=>4n    =3k+3

   4n       =3.(k+1)

   n        =3.(k+1):4

Mà 3 ko chia hết cho 4

=>k+1\(⋮\)4

=>k+1=4z(z\(\in\)N)

=>n    =3.4z:4

=>n     =3z

=>n   \(\ne\)3z thì 4n+3 và 2n+3 nguyên tố cùng nhau

b)Làm tương tự phần a nha

Chúc bn học tốt

14 tháng 11 2016

0 biết

1 tháng 12 2016

A/              Đặt ƯCLN(n+1;4n+3) = d          [ d thuộc N]

           => n+1 chia hết cho d

               4n+3 chia hết cho d

          => 4n+4chia hết cho d [( n+1) x 4]

               4n+3 chia hết cho d

          => (4n+4) - (4n+3) chia hết cho d

          => 1 chia hết cho d

       Mà d thuộc N => d=1   => ƯCLN( n+1; 4n+3) = 1

                                         => n+ 1 và 4n+ 3 nguyên tố cùng nhau

                                                          Vậy .........................................   

B/             Đặt ƯCLN (2n +3; 3n+ 4)= d          [d thuộc N]

               => 2n + 3 chia hết cho d

                   3n+4 chia hết cho d

               => 6n+ 9 chia hết cho d [(2n+3) x 3]

                    6n+ 8 chia hết cho d [(3n+4) x 2]

               => (6n+9) - (6n+8) chia hết cho d

               => 1 chia hết cho d

           Mà d thuộc N =>     d=1    => ƯCLN(2n+3; 3n+4)=1

                                                    => 2n+3 và 3n+4  nguyên tố cùng nhau

                                     Vậy........................................................... Bye nha ! (^_^)

                            

22 tháng 11 2018

huhu mọi người ơi tích cho mk đi mk bị trừ mất 20 điểm rồi 

22 tháng 11 2018

Giả sử 4n+34n+3 và 2n+32n+3 cùng chia hết cho số nguyên tố dd thì:
2(2n+3)−(4n+3)⋮d→3⋮d→d=32(2n+3)−(4n+3)⋮d→3⋮d→d=3
Để (2n+3,4n+3)=1(2n+3,4n+3)=1 thì d≠3d≠3. Ta có:
4n+34n+3 không chia hết cho 33 nếu 4n4n không chia hết cho 33 hay nn không chia hết cho 33.
Kết luận: Với nn không chia hết cho 33 thì 4n+34n+3 và 2n+32n+3 là hai số nguyên tố cùng nhau.