K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2016

\(\frac{1}{21}+\frac{1}{77}+\frac{1}{165}+...+\frac{1}{n^2+4n}=\frac{56}{673}\)

<=> \(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{n.\left(n+4\right)}=\frac{56}{673}\)

<=> \(4.\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{n.\left(n+4\right)}\right)=4.\frac{56}{673}\)

<=> \(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{n\left(n+4\right)}=\frac{224}{673}\)

<=> \(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{n}-\frac{1}{n+4}=\frac{224}{673}\)

<=> \(\frac{1}{3}-\frac{1}{n+4}=\frac{224}{673}\)

<=> \(\frac{n+4-3}{3.\left(n+4\right)}=\frac{224}{673}\Leftrightarrow\frac{n}{3.\left(n+4\right)}=\frac{224}{673}\)

<=> 673n = 224.3(n+4)

<=> 673n = 224.3.n + 224.3.4

<=> 673n = 672n + 2688

<=> 673n - 672n = 2688

<=> n = 2688

15 tháng 1 2017

Bạn làm sai rồi , phải là n=2015

20 tháng 5 2017

\(A=\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{n^2+4n}=\frac{56}{673}\)

\(4A=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{15}+...+\frac{1}{n^2}-\frac{1}{4n}=\frac{56}{673}\)

\(\Rightarrow4A=\)

20 tháng 5 2017

\(\frac{1}{21}+\frac{1}{77}+\frac{1}{165}+...+\frac{1}{n^2+4n}=\frac{56}{673}\)

\(\Rightarrow\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{n\left(n+4\right)}=\frac{56}{673}\)

\(\Rightarrow\frac{1}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{n\left(n+4\right)}\right)=\frac{56}{673}\)

\(\Rightarrow\frac{1}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{n}-\frac{1}{n+4}\right)=\frac{56}{673}\)

\(\Rightarrow\frac{1}{4}\left(\frac{1}{3}-\frac{1}{n+4}\right)=\frac{56}{673}\)

\(\Rightarrow\frac{1}{3}-\frac{1}{n+4}=\frac{56}{673}:\frac{1}{4}\)

\(\Rightarrow\frac{1}{3}-\frac{1}{n+4}=\frac{224}{673}\)

\(\Rightarrow\frac{1}{n+4}=\frac{1}{3}-\frac{224}{673}\)

\(\Rightarrow\frac{1}{n+4}=\frac{1}{2019}\)

=> n + 4 = 2019 

     n = 2019 - 4

     n = 2015

17 tháng 5 2016

 Ta có 1n2+4n=14(1n−1n+4)1n2+4n=14(1n−1n+4) Khi đó pt tương đương: 14(13−17+17−111+...+1n−1n+4)=5667314(13−17+17−111+...+1n−1n+4)=56673 ⟺13−1n+4=224673=>n=2015

17 tháng 5 2016

Sai rồi

9 tháng 6 2017

A = \(\frac{1}{21}+\frac{1}{77}+\frac{1}{165}+\frac{1}{285}+\frac{1}{437}\)

A = \(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+\frac{1}{15.19}+\frac{1}{19.23}\)

A = \(\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}\right)+\frac{1}{4}.\left(\frac{1}{7}-\frac{1}{11}\right)+\frac{1}{4}.\left(\frac{1}{11}-\frac{1}{15}\right)+\frac{1}{4}.\left(\frac{1}{15}-\frac{1}{19}\right)+\frac{1}{4}.\left(\frac{1}{19}-\frac{1}{23}\right)\)

A = \(\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+\frac{1}{19}-\frac{1}{23}\right)\)

A = \(\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{23}\right)\)

A = \(\frac{1}{4}.\frac{20}{69}\)

A = \(\frac{5}{69}\)

9 tháng 6 2017

A=\(\frac{5}{69}\)

7 tháng 5 2017

Có: \(\dfrac{1}{21}+\dfrac{1}{77}+\dfrac{1}{165}+...+\dfrac{1}{n^2+4n}=\dfrac{56}{673}\)

\(\Leftrightarrow\dfrac{1}{3.7}+\dfrac{1}{7.11}+\dfrac{1}{11.15}+...+\dfrac{1}{n\left(n+4\right)}=\dfrac{56}{673}\)

\(\Leftrightarrow\dfrac{4}{3.7}+\dfrac{4}{7.11}+...+\dfrac{4}{n\left(n+4\right)}=\dfrac{4.56}{673}\)

\(\Leftrightarrow\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{n}-\dfrac{1}{n+4}=\dfrac{224}{673}\)

\(\Leftrightarrow\dfrac{1}{3}-\dfrac{1}{n+4}=\dfrac{224}{673}\)

\(\Leftrightarrow\dfrac{1}{n+4}=\dfrac{1}{2019}\)

\(\Leftrightarrow n=2015\)