K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2018

Để  \(3n+24⋮n-4\)

\(3n-12+36⋮n-4\)

\(3.\left(n-4\right)+36⋮n-4\)

mà \(3.\left(n-4\right)⋮n-4\)

\(\Rightarrow36⋮n-4\)

\(\Rightarrow n-4\inƯ_{\left(36\right)}=\left(1;-1;2;-2;3;-3;6;-6;12;-12;18;-18;36;-36\right)\)

rùi bn thay giá trị của n - 4 vào để tìm n nhé !!!!!

31 tháng 1 2016

a) ( 3n + 2 ) chia hết cho n - 1

​Ta có : 3n + 2 = 3n - 1 + 3

​Vì 3n - 1 chia hết cho n - 1

=> 3 chia hết cho n - 1

​=> n - 1 thuộc Ư( 3 )

​Ư ( 3) = { 1 ; - 1 ; 3 ; -3 }

​=> n - 1 thuộc {1 ; -1 ; 3 ; -3 }

​Vậy n thuộc { 2 ; 0 ; 4 ; -2 }

b ) ( 3n + 24 ) chia hết cho n - 4

​Ta có : 3n + 24 = 3n - 4 + 28

​Vì 3n - 4 chia hết cho n - 4

=> 28 chia hết cho n - 4

​Xong bạn làm tương tự như câu a nha

29 tháng 11 2016

Ta có: 3n+5 chia hết cho 3n-1

=> 3n - 1 + 6 chia hết cho 3n - 1

=> 6 chia hết cho 3n - 1 vì 3n - 1 chia hết  cho 3n - 1

=> 3n - 1 \(\in\){ 1 ; 2 ; 3 ; 6 }

=> 3n \(\in\){ 2 ; 3 ; 4 ; 7 }

Mà chỉ có 3 chia hết cho 3 => n=1

29 tháng 11 2016

Thank you

1 tháng 2 2016

a)3n+2/n-1=>3n-3+5/n-1.Vì3n-3/n-1=>5/n-1=>n-1 thuộc ước 5 

b)3n+24/n-4=>3n-12+36/n-4.Vì 3n-12/n-4=>36/n-4=>n-4 thuộc ước 36

c)n^2+5/n+1=>n*n+5/n+1=>n*(n+1)+4/n+1.Vì n*(n+1)/n+1=>4/n-1=>n+1 thuộc ước 4

1 tháng 2 2016

a/ \(\frac{3n+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=\frac{3}{n-1}+6\)

=>n-1 thuộc ƯỚC của 3

=>n-1=1=>n=2

=>n-1=-1=>n=0

=>n-1=3=>n=4

=>n-1=-3=>n=-1

b/ \(\frac{3\left(n+4\right)+12}{n-4}=\frac{3}{n-4}+13\)

=>n-4 thuộc ƯỚC của 3 

=>n-4=1=>n=5

=>n-4=-1=>n=3

=>n-4=3=>n=7

=>n-4=-3=>n=1

câuc(uoc cua5) tương tự mình giải vậy ko bít đúng ko nữa

16 tháng 1 2019

a, n - 1  chia hết cho n  - 1 => 3 ( n -1 ) chia hết cho n - 1 => 3n - 3 chia hết cho n - 1 

Mà 3n + 2 = 3n - 3 + 5 Vì 3n - 3 chia hết cho n - 1 => 5 chia hết cho n - 1 

=> n - 1 thuộc 1 và 5 => n thuộc 2 và 6 

b, Tương tự 

c, \(\hept{\begin{cases}n^2+5⋮n+1\\n+1⋮n+1\end{cases}}\Rightarrow\hept{\begin{cases}n^2+5⋮n+1\\n^2+n⋮n+1\end{cases}}\Rightarrow5-n⋮n+1\)

\(\hept{\begin{cases}5-n⋮n+1\\n+1⋮n+1\end{cases}}\Rightarrow5-n+n+1⋮n+1\)

\(\Rightarrow6⋮n+1\Rightarrow n+1\inƯ\left(6\right)\Rightarrow n+1\in\left\{1;2;3;6\right\}\Rightarrow n\in\left\{0;1;2;5\right\}\)

16 tháng 1 2019

a) Ta có : 3n + 2 chia hết cho n - 1

         => 3n + 2 - 3.( n - 1) chia hết cho n - 1

         => 3n + 2 - ( 3n - 3 ) chia hết cho n - 1

        =>  3n + 2 - 3n + 3 chia hết cho n - 1

         => 5 chia hết cho n -1

        => n -1 thuộc Ư(5) = { 1 ; - 1 ; 5 ; -5}

Ta có bảng ;

n-11-15-5
n206-6

 Vậy n thuộc { 2;0;6;-6}

b) Ta có : 3n + 24 chia hết cho  n -4 

           => 3n + 24 - 3.(n-4) chia hết cho n -4

           => 3n + 24 - (3n - 12 ) chia hết cho n -4

            => 3n + 24 - 3n + 12 chia hết cho n -4

            => 36 chia hết cho n -4

            => n - 4 thuộc Ư(36) ( bạn tự làm nhé)

c) Tương tự nhé

17 tháng 12 2017

a) (n+3) Chia hết cho (n-1)

Ta có : (n+3)=(n-1)+4

Vì (n-1) chia hết cho (n-1) 

Nên (n+3) chia hết cho (n-1) thì 4 chia hết cho (n-1)

=> n-1 thuộc Ư(4)={1;2;4}

n-1     1          2             4

n         2          3            5

Vậy n thuộc {2;3;5 } thì (n+3) chia hết cho (n-1)

b)(4n+3) chia hết cho (2n+1)

Ta có : (4n+3)=2n.2+1+2

Vì (2n+1) chia hết cho (2n+1)

Nên (4n+3) chia hết cho (2n+1) thì 3 chia hết cho (2n+1)

=> 2n+1 thuộc Ư(3)={1;3}

2n+1                 1              3 

2n                    0               2

n                      0              1

Vậy n thuộc {0;1} thì (4n+3) chia hết cho (2n+1)

8 tháng 12 2015

Bạn làm cách giải đi !!!!!!!!!!!!!!!!

6 tháng 3 2020

Ta có 2n+1=2(n-3)+7

Để 2n+1 chia hết cho n-3 thì 2(n-3)+7 chia hết cho n-3

Vì 2(n-3) chia hết cho n-3

=> 7 chia hết cho n-3

n nguyên => n-3 nguyên => n-3 thuộc Ư (7)={-7;-1;1;7}
Nếu n-3=-7 => n=-4 

Nếu n-3=-1 => n=2

Nếu n-3=1 => n=4

Nếu n-3=7 => n=10

6 tháng 3 2020

Ta có : \(2n+1⋮n-3\)

\(=>2n-6+7⋮n-3\)

\(Do:2n-6⋮n-3\)

\(=>7⋮n-3\)

\(=>n-3\inƯ\left(7\right)\)

Nên ta có bảng sau : 

n-371-7-1
n104-42

Vậy ...

2 tháng 2 2018

hơi dài đấy 3

a,

2n+1\(⋮\)2n-3

2n-3+4\(⋮\)2n-3

\(_{\Rightarrow}\)4\(⋮\)2n-3

2n-3\(\in\)Ư(4)=(1;4;2;-1;-4;-2)

2n-3124-1-2-4
2n45721-1
n2  1  

vậy n\(\in\)(2;1)

b;

3n+2\(⋮\)3n-4

3n-4+6\(⋮\)3n-4

=>6\(⋮\)3n-4

3n-4\(\in\)Ư(6)=(1;2;3;6;-1;-2;-3;-6)

3n-41236-1-2-3-6
3n56710321-2
n 3 5 1 -1

vậy n\(\in\)(3;5;-1;1)