Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4n - 1 \(⋮n-2\)
4n - 8 + 7 \(⋮n-2\)
=> 7\(⋮n-2\)
=> n-2\(\in\text{Ư}\left(7\right)\)
=> n - 2\(\in\left\{-7;-1;1;7\right\}\)
a.
Ta có: \(405^n=......5\)
\(2^{405}=2^{404}\cdot2=\left(.......6\right)\cdot2=.......2\)
\(m^2\) là số chính phương nên có chữ số tận cùng khác 3. Vậy A có chữ số tận cùng khác 0 \(\Rightarrow A⋮10\)
b.
\(B=\frac{2n+9}{n+2}+\frac{5}{n+2}\frac{n+17}{ }-\frac{3n}{n+2}=\frac{2n+9+5n+17-3n}{n+2}=\frac{4n+26}{n+2}\)
\(B=\frac{4n+26}{n+2}=\frac{4\left(n+2\right)+18}{n+2}=4+\frac{18}{n+2}\)
Để B là số tự nhiên thì \(\frac{18}{n+2}\) là số tự nhiên
\(\Rightarrow18⋮\left(n+2\right)\Rightarrow n+2\inư\left(18\right)=\left\{1;2;3;6;9;18\right\}\)
+ \(n+2=1\Leftrightarrow n=-1\) ( loại )
+ \(n+2=2\Leftrightarrow n=0\)
+ \(n+2=3\Leftrightarrow n=1\)
+ \(n+2=6\Leftrightarrow n=4\)
+ \(n+2=9\Leftrightarrow n=7\)
+ \(n+2=18\Leftrightarrow n=16\)
Vậy \(n\in\left\{0;1;4;7;16\right\}\) thì \(B\in N\)
c.
Ta có \(55=5\cdot11\) mà \(\left(5;1\right)=1\)
Do đó \(C=\overline{x1995y}⋮55\)\(\Leftrightarrow\)\(\begin{cases}C⋮5\\C⋮11\end{cases}\) \(\frac{\left(1\right)}{\left(2\right)}\)
\(\left(1\right)\Rightarrow y=0\) hoặc \(y=5\)
+ \(y=0\div\left(2\right)\Rightarrow x+9+5-\left(1+9+0\right)⋮11\Rightarrow x=7\)
+ \(y=5\div\left(2\right)\Rightarrow x+9+5-\left(1+9+5\right)⋮11\Rightarrow x=1\)
\(a,\frac{n+5}{n+2}=\frac{n+2+3}{n+2}=1+\frac{3}{n+2}\)
Để \(n+5⋮n+2\) thì \(n+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Xét bảng ( tự xét nha )
KL..
\(b,\frac{2n+3}{n-2}=\frac{2\left(n-2\right)+7}{n-2}=2+\frac{7}{n-2}\)
Giải các ý khác tương tự như trên
Ta có n+5=n+2+3
Để n+5 chia hết cho n+2 thì n+2+3 chia hết cho n+2
Mà n thuộc n => n+2 thuộc N
=> n+2 thuộc Ư (5)={1;5}
Nếu n+2=1 => n=-1 (ktm)
Nếu n+1=5 => n=4(tm)
Vậy n=4 thì n+5 chia hết cho n+2
b) Ta có 2n+3=2(n-2)+7
Để 2n+3 chia hết cho n-2 thì 2(n-2)+7 chia hết cho n-1
n thuộc N => n-1 thuộc N
=> n-1 thuộc Ư (7)={1;7}
Nếu n-1=1 => n=2(tm)
Nếu n-1=7 => n=8 (tm)
3n + 1 chia hết cho n + 1 => 3 chia hết cho n + 1 ( vì n + 1 chia hết cho n + 1 )
=> n + 1 thuộc Ư(3)
=> n +1 thuộc {1, 3, -1, -3}
Ta có bảng sau:
n + 1 | 1 | 3 | -1 | -3 |
n | 0 | 2 | -2 | -4 |
Vậy n = 0; 2; -2; -4. n2 + 1 chia hết
n2 + 1 chia hết cho n
=> n.n + 1 chia hết cho n
=> 1 chia hết cho n
=> n = 1; -1.
n^2+3n+2
=n^2+n+2n+2
=n(n+1)+2(n+1)
=(n+1)(n+2) chia hết cho n+1
=>n^2-n+4n-4+5 chia hết cho n-1
=>\(n-1\in\left\{1;-1;5;-5\right\}\)
mà n>=0
nên \(n\in\left\{2;0;6\right\}\)