Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^2+4\) chia hết cho \(n+2\)
\(\Rightarrow\left[n^2+2n-2n-4+8\right]\) chia hết cho \(n+2\)
\(\Rightarrow n\left(n+2\right)-2\left(n+2\right)+8\) chia hết cho \(n+2\)
\(\Rightarrow\) 8 chia hết cho n + 2
Mà \(Ư\left(8\right)=\left\{1;2;4;8\right\}\)
\(\Rightarrow n+2\in\left\{1;2;4;8\right\}\)
\(\Rightarrow n\in\left\{-1;0;2;6\right\}\)
n + 2 luôn chia hết cho n + 2 => n(n+2) chia hết cho n + 2
=> n2 + 2n chia hết cho n + 2
Mà n2 + 4 chia hết cho n + 2
Nên (n2 + 2n) - (n2 + 4) chia hết cho n + 2
=> 2n - 4 chia hết cho n + 2
2.(n + 2) luôn chia hết cho n + 2 Hay 2n + 4 chia hết cho n + 2
=> 2n + 4 - (2n - 4) chia hết cho n + 2
=> 8 chia hết cho n+ 2
=> n + 2 ∈ Ư(8) = {1;2;4;8}
+) n + 2 = 1 , n là số tự nhiên nên không có n thỏa mãn
+) n+ 2 = 2 => n = 0
:D
n2 + 3 chia hết cho n + 2
n + 2 chia hết cho n + 2
=> n(n + 2) chia hết cho n + 2
n2 + 2n chia hết cho n + 2
=> (n2 + 2n - n2 + 3) chia hết cho n + 2
2n - 3 chia hết cho n + 2
n + 2 chia hết cho n + 2
=> 2(n + 2) chia hết cho n + 2
2n + 4 chia hết cho n + 2
=>(2n + 4 - 2n + 3) chia hết cho n + 2
7 chia hết cho n + 2
n + 2 thuộc U(7) = {-7;-1;1;7}
n + 2 = -7 => n = -9
n + 2 = -1 => n = -3
n + 2 = 1 => n = -1
n + 2 = 7 => n = 5
Mà n là số tự nhiên nên n = 5
n^2+3 chia hết cho n+2
=>(n^2+4n+4)-4n-1 chia hết cho n+2
=>(n+2)^2 -(4n+1) chia hết cho n+2
=>4n+1 chia hết cho n+2(vì (n+2)^2 chia hết cho n+2)
=>4(n+2)-7chia hết cho n+2
=>7 chia hết cho n+2
=>n+2 thuộc Ư(7)
=>n+2=(1,7)
=> n=-1;5 mà n là số tự nhiên nên n=5
đáp số n=5
a,
Ta có: 4n-5 chia hết cho 2n-1
=>4n-2-3 chia hết cho 2n-1
=>2.(2n-1)-3 chia hết cho 2n-1
=>3 chia hết cho 2n-1
=>2n-1=Ư(3)=(-1,-3,1,3)
=>2n=(0,-2,2,4)
=>n=(0,-1,1,2)
Vậy n=0,-1,1,2
Theo bài ra, ta có :
6n + 17 .: n.2
=> 3(n . 2) + 17 .: n.2
Mà 3(n.2) .: n.2
=> 17 .: n.2
=> 8,5 .: n
=> n thuộc Ư(8,5)
\(n^2-1\) chia hết cho 2 và 5
=> n2-1 chia hết cho 10
=> n2 có tận cùng bằng 1
=> n2=81
=> n=9
n chia hết cho 2
=>n có chữ số tận cùng là 0;2;4;6;8
=>n=10k; n=10k+2;n=10k+4;n=10k+6;n=10k+8
Đặt \(A=n^2-2n\)
\(=n\left(n-2\right)\)
TH1: n=10k
\(A=n\left(n-2\right)=10k\left(10k-2\right)⋮5\)
=>Nhận
TH2: n=10k+2
=>\(A=n\left(n-2\right)=\left(10k+2\right)\left(10k+2-2\right)=10k\left(10k+2\right)⋮5\)
=>Nhận
TH3: n=10k+4
\(A=n\left(n-2\right)\)
\(=\left(10k+4\right)\left(10k+4-2\right)\)
\(=\left(10k+4\right)\left(10k+2\right)\) không chia hết cho 5
=>Loại
TH4: n=10k+6
A=n(n-2)
=(10k+6)(10k+6-2)
=(10k+6)(10k+4) không chia hết cho 5
=>Loại
Th5: n=10k+8
A=n(n-2)
=(10k+8)(10k+8-2)
=(10k+8)(10k+6) không chia hết cho 5
=>Loại
Vậy: n có chữ số tận cùng là 0 hoặc 2
n chia hết cho 2
=>n có chữ số tận cùng là 0;2;4;6;8
=>n=10k; n=10k+2;n=10k+4;n=10k+6;n=10k+8
Đặt A = n 2 − 2 n = n ( n − 2 ) TH1: n=10k A = n ( n − 2 ) = 10 k ( 10 k − 2 ) ⋮ 5
=>Nhận
TH2: n=10k+2
=> A = n ( n − 2 ) = ( 10 k + 2 ) ( 10 k + 2 − 2 ) = 10 k ( 10 k + 2 ) ⋮ 5
=>Nhận
TH3: n=10k+4
A = n ( n − 2 ) = ( 10 k + 4 ) ( 10 k + 4 − 2 ) = ( 10 k + 4 ) ( 10 k + 2 ) không chia hết cho 5
=>Loại TH4: n=10k+6 A=n(n-2) =(10k+6)(10k+6-2) =(10k+6)(10k+4) không chia hết cho 5
=>Loại
Th5: n=10k+8 A=n(n-2) =(10k+8)(10k+8-2) =(10k+8)(10k+6) không chia hết cho 5
=>Loại
Vậy: n có chữ số tận cùng là 0 hoặc 2
1 x n + 4 chia hết cho n + 1
=> n + 4 chia hết cho n + 1
(n + 1) + 3 chia hết cho n+1
=> 3 chia hết cho n + 1
Ư(3) = {+-1;+-3}
n + 1 = -1
=> n = -2
n + 1 = 1
=> n = 0
n + 1 = -3
=> n = -4
n + 1 = 4
=> n = 3
Vì n là số tự nhiên => n \(\in\){0;3}
n+4 chia hết n+1
n+4-(n+1) chia hết n+1
3 chia hết n+1
n+1 | 1 | -1 | 3 | -3 |
n | 0 | -2 | 2 | -4 |
n^2+4 chia hết n+2
n^2+2n-2n-4+6 chia hết n+2
n(n+2)-2(n+2)+6 chia hết n+2
(n-2)(n+2)+6 chia hết n+2
=> 6 chia hết n+2
n+2 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | -1 | -3 | 0 | -4 | 1 | -5 | 4 | -8 |