Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(\dfrac{1}{3}\right)^m=\dfrac{1}{81}\)
\(\Rightarrow\dfrac{1^m}{3^m}=\dfrac{1}{81}\)
\(\Rightarrow\dfrac{1}{3^m}=\dfrac{1}{3^4}\)
\(\Rightarrow m=4\)
b) \(\left(\dfrac{3}{5}\right)^n=\left(\dfrac{9}{25}\right)^5\)
\(\Rightarrow\left(\dfrac{3}{5}\right)^n=\left[\left(\dfrac{3}{5}\right)^2\right]^5\)
\(\Rightarrow\left(\dfrac{3}{5}\right)^n=\left(\dfrac{3}{5}\right)^{10}\)
\(\Rightarrow n=10\)
c) \(\left(-0,25\right)^p=\dfrac{1}{256}\)
\(\Rightarrow\left(\dfrac{-1}{4}\right)^p=\dfrac{1}{256}\)
\(\Rightarrow\left(\dfrac{-1}{4}\right)^p=\dfrac{1}{4^4}\)
\(\Rightarrow\left(\dfrac{-1}{4}\right)^p=\left(\dfrac{1}{4}\right)^4\)
\(\Rightarrow p=4\)
a,
\(\left(4x-\dfrac{1}{3}\right)^6=1\\ \Rightarrow\left[{}\begin{matrix}4x-\dfrac{1}{3}=1\\4x-\dfrac{1}{3}=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4x=\dfrac{4}{3}\\4x=\dfrac{-2}{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=\dfrac{-1}{6}\end{matrix}\right.\)
b,
\(\left(5x-\dfrac{2}{3}\right)^2=0\\ \Rightarrow5x-\dfrac{2}{3}=0\\ 5x=\dfrac{2}{3}\\ x=\dfrac{2}{15}\)
c,
\(\left(\dfrac{1}{3}x-\dfrac{1}{2}\right)^3=-8\\ \Rightarrow\dfrac{1}{3}x-\dfrac{1}{2}=-2\\ \dfrac{1}{3}x=\dfrac{-3}{2}\\ x=\dfrac{-9}{2}\)
d,
\(\dfrac{81}{3^n}=3\\ \Leftrightarrow3^4:3^n=3^1\\\Leftrightarrow3^{4-n}=3^1 \\ \Rightarrow n=3\)
e,
\(\dfrac{\left(-2\right)^x}{64}=-2\\ \Leftrightarrow\left(-2\right)^x:\left(-2\right)^6=\left(-2\right)^1\\ \Leftrightarrow\left(-2\right)^{x-6}=\left(-2\right)^1\\ \Rightarrow x=7\)
f,
\(\left(-20\right)^n:10^n=16\\ \left[\left(-20\right):10\right]^n=16\\ \left(-2\right)^n=\left(-2\right)^4\\ \Rightarrow n=4\)
Bài 1:
a) \(\left(4x-\dfrac{1}{3}\right)^6=1\)
\(\Rightarrow4x-\dfrac{1}{3}=1\)
\(4x=1+\dfrac{1}{3}\)
\(4x=\dfrac{4}{3}\)
\(x=\dfrac{4}{3}:4\)
\(x=\dfrac{1}{3}\)
b) \(\left(5x-\dfrac{2}{3}\right)^2=0\)
\(\Rightarrow5x-\dfrac{2}{3}=0\)
\(5x=\dfrac{2}{3}\)
\(x=\dfrac{2}{3}:5\)
\(x=\dfrac{2}{15}\)
c) \(\left(\dfrac{1}{3}x-\dfrac{1}{2}\right)^3=-8\)
\(\Rightarrow\left(\dfrac{1}{3}x-\dfrac{1}{2}\right)^3=\left(-2\right)^3\)
\(\dfrac{1}{3}x-\dfrac{1}{2}=-2\)
\(\dfrac{1}{3}x=-2+\dfrac{1}{2}\)
\(\dfrac{1}{3}x=\dfrac{-3}{2}\)
\(x=\dfrac{-3}{2}:\dfrac{1}{3}\)
\(x=\dfrac{-9}{2}\)
d) \(\dfrac{81}{3^n}=3\)
\(\Rightarrow\dfrac{3^4}{3^n}=3\)
\(\Rightarrow3^n.3=3^4\)
\(3^{n+1}=3^4\)
n + 1 = 4
n = 4 - 1
n = 3
e) \(\dfrac{\left(-2\right)^x}{64}=-2\)
\(\Rightarrow\dfrac{\left(-2\right)^x}{\left(-2\right)^6}=-2\)
\(\Rightarrow\left(-2\right)^x=\left(-2\right)^6.\left(-2\right)\)
\(\left(-2\right)^x=\left(-2\right)^7\)
x = 7
f) (-20)n : 10n = 16
(-20 : 10)n = 16
(-2)n = 16
(-2)n = (-2)4
n = 4.
a) \(\left(\frac{1}{3}\right)^n=\frac{1}{81}\)
\(\Rightarrow\left(\frac{1}{3}\right)^n=\frac{1^4}{3^4}\)
\(\Rightarrow\left(\frac{1}{3}\right)^n=\left(\frac{1}{3}\right)^4\)
\(\Rightarrow n=4\)
Vậy n = 4
b) \(\frac{-512}{343}=\left(\frac{-8}{7}\right)^n\)
\(\Rightarrow\frac{-8^3}{7^3}=\left(\frac{-8}{7}\right)^n\)
\(\Rightarrow\left(\frac{-8}{7}\right)^3=\left(\frac{-8}{7}\right)^n\)
\(\Rightarrow n=3\)
Vậy n = 3
a)\(\left(\dfrac{1}{2}\right)^n=\dfrac{1}{32}\)
=>\(\left(\dfrac{1}{2}\right)^n=\left(\dfrac{1}{2}\right)^5\)
=>n=5
b)\(\left(\dfrac{343}{125}\right)=\left(\dfrac{7}{5}\right)^n\)
=>\(\left(\dfrac{7}{5}\right)^3=\left(\dfrac{7}{5}\right)^n\)
=>n=3
c)\(\dfrac{16}{2^n}=2\)
=>2n=\(\dfrac{16}{2}\)
=>2n=8
=>2n=23
=>n=3
d)\(\dfrac{\left(-3\right)^n}{81}=-27\)
=>(-3)n=-27.81
=>(-3)n=-2187
=>(-3)n=(-3)7
=>n=7
e)8n:2n=4
=>(23)n:2n=4
=>23n:2n=4
=>23n-n=4
=>22n=4
=>22n=22
=>2n=2
=>n=1
f)32.3n=35
=>3n=35:32
=>3n=35-2
=>3n=33
=>n=3
g) (22:4).2n=4
=>1.2n=22
=>n=2
h)3-2.34.3n=37
=>\(\left(\dfrac{1}{3}\right)^2\).34.3n=37
=>32.3n=37
=>32+n=37
=>2+n=7
=>n=5
\(a,\left[\left(0,5\right)^3\right]^n=\frac{1}{64}\Rightarrow\left(0,125\right)^n=0,125^2\Rightarrow n=2\)
\(b,\frac{64}{\left(-2\right)^{n+1}}=4\Rightarrow\left(-2\right)^{n+1}=\frac{64}{4}\Rightarrow\left(-2\right)^{n+1}=16\Rightarrow\left(-2\right)^{n+1}=\left(-2\right)^4\)
\(\Rightarrow n+1=4\Rightarrow n=3\)
\(c,\left(\frac{1}{3}\right)^{n+1}=\frac{1}{81}\Rightarrow\left(\frac{1}{3}\right)^{n+1}=\left(\frac{1}{3}\right)^4\Rightarrow n+1=4\Rightarrow n=3\)
\(d,\left(\frac{3}{4}\right)^n.\frac{1}{2}=\frac{81}{512}\Rightarrow\left(\frac{3}{4}\right)^n=\frac{81}{512}:\frac{1}{2}=\frac{81}{256}\Rightarrow\left(\frac{3}{4}\right)^n=\left(\frac{3}{4}\right)^4\Rightarrow n=4\)
Bài 10:
a) (1/3)n = 1/81
=> (1/3)n = (1/3)4
=> n = 4
b) -512/343 = (-8/7)n
=> (-8/7)3 = (-8/7)n
=> 3 = n (hay n = 3)
c) (-3/4)n = 81/256
=> (-3/4)n = (-3/4)4
=> n = 4
d) 64/(-2)n = (-2)3
=> 64/(-2)n = -8
=> (-2)n = -8
=> (-2)n = (-2)3
=> n = 3
Bài 11: (không có y để tìm nhé)
a) (0,4x - 1,3)2 = 5,29
=> (0,4x - 1,3)2 = (2,3)2
=> 0,4x - 1,3 = 2,3
=> 0,4x = 3,6
=> x = 9
b) (3/5 - 2/3x)3 = -64/125
=> (3/5 - 2/3x)3 = (-4/5)3
=> 3/5 - 2/3x = -4/5
=> 2/3x = 7/5
=> x = 21/10
a)
\(\left(\frac{1}{3}\right)^n\cdot27^n=3^n\)
\(\Rightarrow\left(\frac{1}{3}\cdot27\right)^n=3^n\)
\(\Rightarrow9^n=3^n\)
\(\Rightarrow\left(3^2\right)^n=3^n\)
\(\Rightarrow3^{2n}=3^n\)
\(\Rightarrow2n=n\)
\(\Leftrightarrow n=0\)
Vậy \(n=0\)
d) Ta có:
\(6^{3-n}=216\)
\(\Rightarrow6^{3-n}=6^3\)
\(\Rightarrow3-n=3\)
\(\Rightarrow n=3-3\)
\(\Rightarrow n=0\)
Vậy \(n=0\)\(\text{ }\)
a)
b,
\(\dfrac{\left(-3\right)^n}{81}=-27\Rightarrow\dfrac{\left(-3\right)^n}{\left(-3\right)^4}=-27\Rightarrow\left(-3\right)^{n-4}=\left(-3\right)^3\Rightarrow n-4=3\Rightarrow n=7\)
c,\(8^n:2^n=4\Rightarrow4^n=4\Rightarrow n=1\)
=> (-3)n-4 = (-3)3
=> n - 4 = 3 => n = 7
c) 8n : 2n = 4
4n = 4.
1. Ta có: \(x\left(6-x\right)^{2003}=\left(6-x\right)^{2003}\)
=> \(x\left(6-x\right)^{2003}-\left(6-x\right)^{2003}=0\)
=> \(\left(6-x\right)^{2003}\left(x-1\right)=0\)
=> \(\orbr{\begin{cases}\left(6-x\right)^{2003}=0\\x-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}6-x=0\\x=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=6\\x=1\end{cases}}\)
Bài 2. Ta có: (3x - 5)100 \(\ge\)0 \(\forall\)x
(2y + 1)100 \(\ge\)0 \(\forall\)y
=> (3x - 5)100 + (2y + 1)100 \(\ge\)0 \(\forall\)x;y
Dấu "=" xảy ra khi: \(\hept{\begin{cases}3x-5=0\\2y+1=0\end{cases}}\) => \(\hept{\begin{cases}3x=5\\2y=-1\end{cases}}\) => \(\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{1}{2}\end{cases}}\)
Vậy ...
B
B.n=5