K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2018

2)

a) 2n+5 chia het cho n-1 

=> 2(n-1) +7 chia het cho n-1 

=: n-1 thuoc uoc cua 7 den day ke bang la xong. 

may cau con lai lam tuong tu

3 tháng 2 2018

dài quá ko mún làm

4 tháng 7 2017

2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1

Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1

3) Ta có : 5n - 1 chia hết chi n - 2  

=> 5n - 10 + 9 chia hết chi n - 2 

=> 5(n - 2) + 9 chia hết chi n - 2 

=> n - 2 thuộc Ư(9) = {1;3;9}

Ta có bảng : 

n - 2139
n3511
4 tháng 7 2017

1) Ta có : 2n + 3 chia hết cho 3n + 1 

<=> 6n + 9 chia hết cho 3n + 1

<=> 6n + 2 + 7 chia hết cho 3n + 1

=>  7 chia hết cho 3n + 1

=> 3n + 1 thuộc Ư(7) = {1;7}

Ta có bảng : 

3n + 117
3n06
n02

Vậy n thuộc {0;2}

25 tháng 3 2020

2 nhớ lk

11 tháng 12 2016

cậu t đi

11 tháng 12 2016

\(5^{2016}\) ?

28 tháng 1 2020

1/

Ta có 2n+7=2n-6+13=2(n-3)+13

Vì \(2\left(n-3\right)⋮\left(n-3\right)\)

Để \(\left[2\left(n-3\right)+13\right]⋮\left(n-3\right)\Leftrightarrow13⋮\left(n-3\right)\Leftrightarrow\left(n-3\right)\inƯ_{ }_{_{ }\left(13_{ }\right)_{ }}=\left\{\pm1;\pm13\right\}\)Ta có bảng:

n-3-13-1113
n-1024

16

Vậy...

28 tháng 1 2020

Câu 2 tt

3/3n+2 chia hếy 2n-1

Ta có \(\hept{\begin{cases}\left(3n+2\right)⋮\left(2n-1\right)\\\left(2n-1\right)⋮\left(2n-1\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2\left(3n+2\right)⋮\left(2n-1\right)\\3\left(2n-1\right)⋮\left(2n-1\right)\end{cases}}\)

\(\Rightarrow2\left(3n+2\right)-3\left(2n-1\right)⋮\left(2n-1\right)\)

\(\Rightarrow1⋮\left(2n-1\right)\)

\(\Rightarrow\left(2n-1\right)\inƯ\left(1\right)=\left\{\pm1\right\}\)

Kẻ bảng như trên nhá bn

T.i.c.k cho mik

#TM

9 tháng 1 2016

1) 2n+7=2(n+1)+5

để 2n+7 chia hết cho n+1 thì 5 phải chia hết cho n+1

=> n+1\(\in\) Ư(5) => n\(\in\){...............}

bạn tự tìm n vì mình chưa biết bạn có học số âm hay chưa

Từ bài 2-> 4 áp dụng như bài 1

4 tháng 1 2021

Ta có 2n+7=2(n+1)+5

Vì 2(n+1

Do đó 2n + 7=2(n+1)+5 khi 5 chí hết cho n +1

Suy ra n+1 "thuộc tập hợp" Ư (5) = {1;5}

Lập bảng n+1 I 1 I 5

                  n   I 0 I 4

Vậy n "thuộc tập hợp" {0;4}

12 tháng 9 2017

Ta có: \(2n+1⋮6-n\)

\(\Leftrightarrow2n+1⋮-\left(n-6\right)\)

\(\Leftrightarrow2n-12+13⋮n-6\)

\(\Leftrightarrow2\left(n-6\right)+13⋮n-6\)

\(\Leftrightarrow13⋮n-6\)

\(\Rightarrow n-6\inƯ\left(13\right)=\left\{-13;-1;1;13\right\}\)

\(n=\left\{-7;5;7;19\right\}\)