\(\dfrac{\left(-\dfrac{5}{7}\right)^n}{\left(-\dfrac{5}{7}\right)^n}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2018

a) \(\dfrac{\left(-\dfrac{5}{7}\right)^n}{\left(-\dfrac{5}{7}\right)^{n-1}}\)

\(=\dfrac{\left(-\dfrac{5}{7}\right)^n}{\left(-\dfrac{5}{7}\right)^n:\left(-\dfrac{5}{7}\right)}\)

\(=\dfrac{\left(-\dfrac{5}{7}\right)^n}{\left(-\dfrac{5}{7}\right)^n.\left(-\dfrac{7}{5}\right)}\)

\(=\dfrac{1}{\left(-\dfrac{7}{5}\right)}\)

\(=1.\left(-\dfrac{5}{7}\right)\)

\(=-\dfrac{5}{7}\)

b) \(\dfrac{\left(-\dfrac{1}{2}\right)^{2n}}{\left(-\dfrac{1}{2}\right)^n}\)

\(=\dfrac{\left(-\dfrac{1}{2}\right)^n.\left(-\dfrac{1}{2}\right)^n}{\left(-\dfrac{1}{2}\right)^n}\)

\(=\left(-\dfrac{1}{2}\right)^n\)

16 tháng 9 2017

cái này mà bạn ko biết làm á, bấm máy tính tạch tạch mấy phát là ra mà

17 tháng 9 2017

lười làm nên nhờ mấy bạn giải dùm

22 tháng 7 2018

a/ \(\left(2^2\right)^{\left(2^2\right)}=4^4=256\)

b/ \(\dfrac{\left(-\dfrac{5}{7}\right)^{n+1}}{\left(-\dfrac{5}{7}\right)^n}=\dfrac{\left(-\dfrac{5}{7}\right)^n.\left(-\dfrac{5}{7}\right)}{\left(-\dfrac{5}{7}\right)^n}=-\dfrac{5}{7}\)

c/ \(\dfrac{8^{14}}{4^{12}}=\dfrac{\left(2^3\right)^{14}}{\left(2^2\right)^{12}}=\dfrac{2^{42}}{2^{24}}=2^{18}\)

22 tháng 7 2018

thank you

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Lời giải:

a) \(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{n-1}-1\right)\left(\frac{1}{n}-1\right)\)

\(=\frac{1-2}{2}.\frac{1-3}{3}.\frac{1-4}{4}...\frac{-(n-2)}{n-1}.\frac{-(n-1)}{n}\)

\(=\frac{(-1)(-2)(-3)...[-(n-2)][-(n-1)]}{2.3.4...(n-1)n}\)

\(=\frac{(-1)^{n-1}(1.2.3....(n-2)(n-1))}{2.3.4...(n-1)n}=(-1)^{n-1}.\frac{1}{n}\)

b) \(B=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{n^2}-1\right)\)

\(=\frac{1-2^2}{2^2}.\frac{1-3^2}{3^2}.....\frac{1-n^2}{n^2}\)

\(=\frac{(-1)(2^2-1)}{2^2}.\frac{(-1)(3^2-1)}{3^2}....\frac{(-1)(n^2-1)}{n^2}\)

\(=(-1)^{n-1}.\frac{(2^2-1)(3^2-1)...(n^2-1)}{2^2.3^2....n^2}\)

\(=(-1)^{n-1}.\frac{(2-1)(2+1)(3-1)(3+1)...(n-1)(n+1)}{2^2.3^2....n^2}\)

\(=(-1)^{n-1}.\frac{(2-1)(3-1)...(n-1)}{2.3...n}.\frac{(2+1)(3+1)...(n+1)}{2.3...n}\)

\(=(-1)^{n-1}.\frac{1.2.3...(n-1)}{2.3...n}.\frac{3.4...(n+1)}{2.3.4...n}\)

\(=(-1)^{n-1}.\frac{1}{n}.\frac{n+1}{2}=(-1)^{n-1}.\frac{n+1}{2n}\)

22 tháng 10 2017

a) \(\left(\dfrac{1}{2}\right)^{2n-1}=\dfrac{1}{8}\)

\(\Rightarrow\left(\dfrac{1}{2}\right)^{2n-1}=\left(\dfrac{1}{2}\right)^3\)

\(\Rightarrow2n-1=3\)

\(\Rightarrow2n=4\)

\(\Rightarrow n=2\)

22 tháng 10 2017

a) \(\left(\dfrac{1}{2}\right)^{2n-1}=\dfrac{1}{8}\)

\(\Rightarrow2^{-\left(2n-1\right)}=2^{-3}\)

\(\Rightarrow2^{-2n+1}=2^{-3}\)

\(\Rightarrow-2n+1=-3\)

\(\Rightarrow-2n=-4\)

\(\Rightarrow n=-2\)

Vậy ...

b) \(\left(\dfrac{7}{5}\right)^n=\dfrac{343}{125}\)

\(\Rightarrow\left(\dfrac{7}{5}\right)^n=\left(\dfrac{7}{5}\right)^3\)

\(\Rightarrow n=3\)

Vậy ....

a) \(2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)

\(\Rightarrow2^n\cdot\left(2^{-1}+4\right)=9\cdot2^5\)

\(\Rightarrow2^n\cdot4,5=288\)

\(\Rightarrow2^n=64\)

\(\Rightarrow n=6\)

b) \(2^m-2^n=1984\)

\(\Rightarrow2^n\cdot\left(2^{m-n}-1\right)=2^6\cdot31\)

\(\Rightarrow\left\{{}\begin{matrix}2^n=2^6\\2^{m-n}-1=31\end{matrix}\right.\)

\(\Rightarrow n=6\)

\(\Rightarrow2^{m-n}=32\Rightarrow m-n=5\Rightarrow m=11\)

26 tháng 9 2017

\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+....+\dfrac{1}{18.19.20}=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{18.19}-\dfrac{1}{19.20}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{19.20}\right)\\ =\dfrac{1}{4}-\dfrac{1}{2.19.20}< \dfrac{1}{4}\)

Cái B TT nhé

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+....+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\\ =1-\dfrac{1}{n}< 1\)

D TT

E mk thấy nó ss ớ

26 tháng 9 2017

ai thế

9 tháng 12 2017

Click để xem thêm, còn nhiều lắm!

28 tháng 9 2018

Đây là tính hợp lí ... mà câu a là 27,5 chứ không phải 2,75...

\(A=\dfrac{7,5-0,6+\dfrac{3}{7}+\dfrac{3}{13}}{27,5-2,2+\dfrac{11}{7}+\dfrac{11}{3}}=\dfrac{\dfrac{15}{2}-\dfrac{3}{5}+\dfrac{3}{7}+\dfrac{3}{13}}{\dfrac{55}{2}-\dfrac{11}{5}+\dfrac{11}{7}+\dfrac{11}{3}}\\ =\dfrac{3\left(\dfrac{5}{2}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)}{11\left(\dfrac{5}{2}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)}=\dfrac{3}{11}\)

b: \(=26:\left[\dfrac{3:0.1}{2.5\cdot2}+\dfrac{0.25\cdot4}{2}\right]+\dfrac{2}{3}\cdot\dfrac{21}{4}\)

\(=26:\left[\dfrac{30}{5}+1\right]+\dfrac{42}{12}\)

\(=\dfrac{26}{7}+\dfrac{42}{12}=\dfrac{101}{14}\)

c: \(=\left[\dfrac{4-3}{386}\cdot\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\dfrac{25}{4002}\cdot\dfrac{2001}{25}+\dfrac{9}{2}\right]\)

\(=\dfrac{\left(\dfrac{1}{34}+\dfrac{33}{34}\right)}{\dfrac{1}{2}+\dfrac{9}{2}}=1:5=\dfrac{1}{5}\)