K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NA
Tìm một số tự nhiên nhỏ nhất, biết rằng khi chia số đó cho 29 thì dư 5 và khi chia cho 31 thì dư 29.
0
HT
0
TV
3
NV
5
S
17 tháng 2 2016
Giả sử số cần tìm là A đã bớt đi 5.
Khi đó A chia hết cho 29, còn A chia cho 31 dư: 29 - 5 = 24
=> A=31x k+24 (k là số tự nhiên)
Thử chọn: k=0,1,2,3,...ta thấy: khi k=17 thì A=551 chia hết cho 29
Vậy số cần tìm là: A = 551 + 5 = 556
số tự nhiên A chia cho 29 dư 5 nghĩa là A = 29p + 5 ( p ∈ N ) tương tự A = 31q + 28 ( q ∈ N ) nên
31q + 28 = 29p + 5 ở đây p > q vì nếu p ≤ q ta được 31q - 29 p + 23 = 0 là vô lý vì 31q - 29 p + 23 > 0 với giả thiết p ≤ q ( 29p ≤ 29q < 31q )
vậy p > q ta có 29 ( p - q ) = 23 + 2q vì A là nhỏ nhất nên với p, q ở trên thì p - q nhỏ nhất = 1 thay lại vào ta được q = ( 29 - 23 ) : 2 = 3 vậy p = 4 thay vào ta được A = 29. 4 + 5 = 121
Thử lại 121 = 31 . 3 + 28 thỏa mãn đề bài .
vòng 9 đó ,thanks,mik đc 290,ko bít sai câu nào