Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số có 2 chữ số là ab. 9 ≥ a ≥ 1 , 9 ≥ b ≥ 0 , a,b thuộc N.
Theo đề ta có :
( a + b ) ³ = ( 10 a + b ) ²
< = >a + b = [ 1 + 9 a / ( a + b) ] ²
=> a + b là số chính phương và 9a chia hết cho ( a + b)
=> a + b \(\in\){ 1 ; 4 ; 9 ; 16 } và 9a chia hết cho ( a + b )
a + b = 1 => 10 a + b = 1 (loại)
a + b = 4 => 10 a + b = 8 (loại)
a + b = 9 => 10 a + b = 27 => a = 2 và b = 7 (nhận)
a + b = 16=> 10 a + b = 64 => a = 6 và b = 4 (loại)
Vậy số cần tìm là 27
Bài 1:
Gọi số cần tìm là ab thì theo giả thiết, ta có: ab+a+b=65 <=> 11a+2b=65 => a\(\le\)5 và a lẻ (do 2b chẵn, 65 lẻ) => a\(\in\)(1;3;5) rồi giải ra tìm b.
Bài 2:
(chưa biết)
Gọi số phải tìm là \(\overline{ab}\)\((0< a,b< 10;a,b\in N)\)
Theo bài ra ta có :
\(\overline{ab}+a+b=65\)
\(\Rightarrow10a+b+a+b=65\)
\(\Rightarrow11a+2b=65\)
Vì 2b là số chẵn
\(\Rightarrow\)11a là số lẻ
Mà 11a<65\(\Rightarrow a\in\left(1;3;5\right)\)
Thử lại:a=5\(\Rightarrow b=5\)
Vậy số phải tìm là 55
Số cần tìm là x = a.10+b, với a là chữ số hàng chục, b là chữ số hàng đơn vị, a, b thuộc tập A={0,1,2,...,9}.
theo đề thì x2 = (a+b)3
Các số a,b,x, x2, (a+b)3 đều là những số tự nhiên nên
(a+b) là số chính phương, mà a+b là tổng của 2 số thuộc tập A nên a+b<19 (9+9=18). Vậy a+b thuộc tập {1,4,9,16}.(*)
căn bậc 3 của x phải là số tự nhiên. Trong tập số tự nhiên có 2 chữ số chỉ có 2 số thỏa là 27(=33), 64(43) . Nhận thấy trong 2 số này chỉ có 27 là thỏa (*).
27 là số cần tìm.
Số cần tìm là x = a.10+b, với a là chữ số hàng chục, b là chữ số hàng đơn vị, a, b thuộc tập A={0,1,2,...,9}.
theo đề thì x2 = (a+b)3
Các số a,b,x, x2, (a+b)3 đều là những số tự nhiên nên
(a+b) là số chính phương, mà a+b là tổng của 2 số thuộc tập A nên a+b<19 (9+9=18). Vậy a+b thuộc tập {1,4,9,16}.(*)
căn bậc 3 của x phải là số tự nhiên. Trong tập số tự nhiên có 2 chữ số chỉ có 2 số thỏa là 27(=33), 64(43) . Nhận thấy trong 2 số này chỉ có 27 là thỏa (*).
27 là số cần tìm.