Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\frac{n+1}{n-3}\)
\(D=\frac{n-3+4}{n-3}\)
\(D=1+\frac{4}{n-3}\)
để \(D\in Z\)thì \(\frac{4}{n-3}\in Z\)
\(\Leftrightarrow n-3\inƯ\left(4\right)\)
\(\Leftrightarrow n-3\in\left\{\pm1;\pm2;\pm4\right\}\)
+ \(n-3=1\Leftrightarrow n=4\)
những cái sau tương tự
Có \(D=\frac{n+1}{n-3}\)( điều kiện để D tồn tại : \(n\ne3\))
Có D thuộc Z <=> \(\frac{n+1}{n-3}\inℤ\Leftrightarrow\frac{n-3+4}{n-3}\inℤ\Leftrightarrow1+\frac{4}{n-3}\inℤ\)
\(\Leftrightarrow\frac{4}{n-3}\inℤ\Leftrightarrow n-3\inƯ\left(4\right)\)(Vì \(n\in Z\Rightarrow n-3\inℤ\))
Mà \(Ư\left(4\right)=\left\{1;2;4;-1;-2;-4\right\}\Rightarrow n-3\in\left\{1;2;4;-1;-2;-4\right\}\)
\(\Leftrightarrow n\in\left\{4;5;7;2;1;-1\right\}\)( thỏa mãn điều kiện n khác 3 và n thuộc Z)
Vậy \(n\in\left\{4;5;7;2;1;-1\right\}\)thì D thuộc Z
Ta phải tìm số nguyên dương n để A là số nguyên tố.Với :
A=n^2/60-n=60^2-(60^2-n^2)/60-n=-(60^2-n^2)/60-n+60^2/60-n=-(60+n)+3600/60+n
Muốn A là số nguyên tố trước hết A là số nguyên.Như vậy (60-n) là ước nguyên dương của 3600,suy ra n<60 và 3600:(60-n) phải lớn hơn 60+n, đồng thời thỏa mãn A là số nguyên tố.Ta kiểm tra lần lượt các giá trị của n là ước của 60:
Trường hợp 1:n=30 => Ta có A=-90+3600:30=30 không là số nguyên tố => loại
Trường hợp 2:n=15 => Ta có A=-75+3600:45=5 là số nguyên tố => chọn
Trường hợp 3:n=12 => Ta có A=-72+3600:48=3 là số nguyên tố => chọn
Trường hợp 4: n=6,n=5,n=3,n=2 thì A không là số nguyên => loại. Suy ra:n=1 thì A âm => loại
Vậy n=12 và n=15
Em làm chưa chắc đúng nha, chị thông cảm.
12 . ( x - 1 ) : 3 = 43 + 23
12 . ( x - 1 ) : 3 = 64 + 8
12 . ( x - 1 ) : 3 = 72
12 . ( x - 1 ) = 72 . 3
12 . ( x - 1 ) = 216
x - 1 = 216 : 12
x - 1 = 18
x = 18 + 1
x = 19
b: \(\dfrac{1121}{1119}+\dfrac{1720}{217}=\dfrac{2167937}{119\cdot217}\)