Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(x\ne0;x\ne\pm1\)
a) Bạn ghi lại rõ đề.
b) \(B=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{x^2-1}=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{\left(x-1\right).\left(x+1\right)}\)
\(=\dfrac{\left(x-1\right)^2+3x-x^2}{\left(x-1\right).\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right).\left(x+1\right)}=\dfrac{1}{x-1}\)
c) \(P=A.B=\dfrac{x^2+x-2}{x.\left(x-1\right)}=\dfrac{\left(x-1\right).\left(x+2\right)}{x\left(x-1\right)}=\dfrac{x+2}{x}=1+\dfrac{2}{x}\)
Không tồn tại Min P \(\forall x\inℝ\)
\(A=\dfrac{x^2+mx+n}{x^2+2x+4}\)
\(\Leftrightarrow Ax^2+2Ax+4A=x^2+mx+n\)
\(\Leftrightarrow\left(A-1\right)x^2+\left(2A-m\right)x+\left(4A-n\right)=0\left(1\right)\)
A có cực trị khi (1) có nghiệm
\(\Leftrightarrow\Delta=\left(4A^2-4Am+m^2\right)-4\left[4A^2-A\left(n+4\right)+n\right]\ge0\)
\(\Leftrightarrow-12A^2-4A\left(m-n-4\right)+m^2-4n\ge0\) (1)
Mặt khác, theo gt, ta có: \(\left\{{}\begin{matrix}A\ge\dfrac{1}{3}\\A\le3\end{matrix}\right.\)
\(\Rightarrow\left(3A-1\right)\left(3-A\right)\ge0\)
\(\Leftrightarrow-3A^2+10A-3\ge0\)
\(\Leftrightarrow-12A^2+40A-12\ge0\) (2)
Từ (1) và (2) suy ra \(\left\{{}\begin{matrix}m-n-4=-10\\m^2-4n=-12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m+6=n\\m^2-4\left(m+6\right)=-12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n=m+6\\\left(m-6\right)\left(m+2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}n=12\\n=4\end{matrix}\right.\\\left[{}\begin{matrix}m=6\\m=-2\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left(m;n\right)=\left(6;12\right);\left(-2;4\right)\)
a: Ta có: \(x^2=3-2\sqrt{2}\)
nên \(x=\sqrt{2}-1\)
Thay \(x=\sqrt{2}-1\) vào A, ta được:
\(A=\dfrac{\left(\sqrt{2}+1\right)^2}{\sqrt{2}-1}=\dfrac{3+2\sqrt{2}}{\sqrt{2}-1}=7+5\sqrt{2}\)
\(a,ĐK:x\ge1;x\ne3\\ b,A=\dfrac{\left(\sqrt{x-1}+\sqrt{2}\right)\left(\sqrt{x-1}-\sqrt{2}\right)}{\sqrt{x-1}-\sqrt{2}}=\sqrt{x-1}+\sqrt{2}\)
\(P=-\dfrac{2019}{x^2}+\dfrac{m}{x}=-2019\left(\dfrac{1}{x^2}-2.\dfrac{m}{2.2019}.\dfrac{1}{x}\right)\)
\(=-2019\left(\dfrac{1}{x^2}-2.\dfrac{m}{4038}.\dfrac{1}{x}+\dfrac{m^2}{4038^2}-\dfrac{m^2}{4038^2}\right)=-2019\left(\dfrac{1}{x}-\dfrac{m}{4038}\right)^2+\dfrac{2019m^2}{4038^2}\le\dfrac{2019m^2}{4038^2}\)
\(\Rightarrow\dfrac{2019m^2}{4038^2}=2019\Rightarrow m=\pm4038\)
\(P=\dfrac{mx-2019}{x^2}\Rightarrow px^2-mx+2019=0\)
\(\Delta=m^2-4.2019P\ge0\)
\(\Leftrightarrow P\le\dfrac{m^x}{8076}\)
để \(\max\limits_P=2019\) thì \(\dfrac{m^2}{8076}=2019\)
\(\Leftrightarrow m^2=8076.2019\)
\(=2.2.2019.2019\)
\(\Leftrightarrow m=4038\)(vì m>0)
vậy m=4038
\(P\left(x\right)=\dfrac{4x^4+16x^3+56x^2+80x+356}{x^2+2x+5}\\ P\left(x\right)=\dfrac{4x^2\left(x^2+2x+5\right)+8x\left(x^2+2x+5\right)+20\left(x^2+2x+5\right)+256}{x^2+2x+5}\\ P\left(x\right)=4\left(x^2+2x+5\right)+\dfrac{256}{x^2+2x+5}\\ \ge2\sqrt{\dfrac{4\left(x^2+2x+5\right)\cdot256}{x^2+2x+5}}=2\sqrt{1024}=64\left(BĐTcosi\right)\)
Dấu \("="\Leftrightarrow4\left(x^2+2x+5\right)=\dfrac{256}{x^2+2x+5}\)
\(\Leftrightarrow x^2+2x+5=8\Leftrightarrow x^2+2x-3=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)