K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2023

ĐKXĐ : \(x\ne0;x\ne\pm1\)

a) Bạn ghi lại rõ đề.

b) \(B=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{x^2-1}=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{\left(x-1\right).\left(x+1\right)}\)

\(=\dfrac{\left(x-1\right)^2+3x-x^2}{\left(x-1\right).\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right).\left(x+1\right)}=\dfrac{1}{x-1}\)

c) \(P=A.B=\dfrac{x^2+x-2}{x.\left(x-1\right)}=\dfrac{\left(x-1\right).\left(x+2\right)}{x\left(x-1\right)}=\dfrac{x+2}{x}=1+\dfrac{2}{x}\)

Không tồn tại Min P \(\forall x\inℝ\)

25 tháng 2 2018

\(A=\dfrac{x^2+mx+n}{x^2+2x+4}\)

\(\Leftrightarrow Ax^2+2Ax+4A=x^2+mx+n\)

\(\Leftrightarrow\left(A-1\right)x^2+\left(2A-m\right)x+\left(4A-n\right)=0\left(1\right)\)

A có cực trị khi (1) có nghiệm

\(\Leftrightarrow\Delta=\left(4A^2-4Am+m^2\right)-4\left[4A^2-A\left(n+4\right)+n\right]\ge0\)

\(\Leftrightarrow-12A^2-4A\left(m-n-4\right)+m^2-4n\ge0\) (1)

Mặt khác, theo gt, ta có: \(\left\{{}\begin{matrix}A\ge\dfrac{1}{3}\\A\le3\end{matrix}\right.\)

\(\Rightarrow\left(3A-1\right)\left(3-A\right)\ge0\)

\(\Leftrightarrow-3A^2+10A-3\ge0\)

\(\Leftrightarrow-12A^2+40A-12\ge0\) (2)

Từ (1) và (2) suy ra \(\left\{{}\begin{matrix}m-n-4=-10\\m^2-4n=-12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m+6=n\\m^2-4\left(m+6\right)=-12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}n=m+6\\\left(m-6\right)\left(m+2\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}n=12\\n=4\end{matrix}\right.\\\left[{}\begin{matrix}m=6\\m=-2\end{matrix}\right.\end{matrix}\right.\)

Vậy \(\left(m;n\right)=\left(6;12\right);\left(-2;4\right)\)

a: Ta có: \(x^2=3-2\sqrt{2}\)

nên \(x=\sqrt{2}-1\)

Thay \(x=\sqrt{2}-1\) vào A, ta được:

\(A=\dfrac{\left(\sqrt{2}+1\right)^2}{\sqrt{2}-1}=\dfrac{3+2\sqrt{2}}{\sqrt{2}-1}=7+5\sqrt{2}\)

16 tháng 11 2021

\(a,ĐK:x\ge1;x\ne3\\ b,A=\dfrac{\left(\sqrt{x-1}+\sqrt{2}\right)\left(\sqrt{x-1}-\sqrt{2}\right)}{\sqrt{x-1}-\sqrt{2}}=\sqrt{x-1}+\sqrt{2}\)

16 tháng 11 2021

xin làm thêm câu c,d nữa đi ạ

 

NV
5 tháng 8 2021

\(P=-\dfrac{2019}{x^2}+\dfrac{m}{x}=-2019\left(\dfrac{1}{x^2}-2.\dfrac{m}{2.2019}.\dfrac{1}{x}\right)\)

\(=-2019\left(\dfrac{1}{x^2}-2.\dfrac{m}{4038}.\dfrac{1}{x}+\dfrac{m^2}{4038^2}-\dfrac{m^2}{4038^2}\right)=-2019\left(\dfrac{1}{x}-\dfrac{m}{4038}\right)^2+\dfrac{2019m^2}{4038^2}\le\dfrac{2019m^2}{4038^2}\)

\(\Rightarrow\dfrac{2019m^2}{4038^2}=2019\Rightarrow m=\pm4038\)

\(P=\dfrac{mx-2019}{x^2}\Rightarrow px^2-mx+2019=0\)

                            \(\Delta=m^2-4.2019P\ge0\)

                                \(\Leftrightarrow P\le\dfrac{m^x}{8076}\)

để \(\max\limits_P=2019\) thì \(\dfrac{m^2}{8076}=2019\)

                                \(\Leftrightarrow m^2=8076.2019\)

                                \(=2.2.2019.2019\)

                                \(\Leftrightarrow m=4038\)(vì m>0)

vậy m=4038

8 tháng 9 2021

\(P\left(x\right)=\dfrac{4x^4+16x^3+56x^2+80x+356}{x^2+2x+5}\\ P\left(x\right)=\dfrac{4x^2\left(x^2+2x+5\right)+8x\left(x^2+2x+5\right)+20\left(x^2+2x+5\right)+256}{x^2+2x+5}\\ P\left(x\right)=4\left(x^2+2x+5\right)+\dfrac{256}{x^2+2x+5}\\ \ge2\sqrt{\dfrac{4\left(x^2+2x+5\right)\cdot256}{x^2+2x+5}}=2\sqrt{1024}=64\left(BĐTcosi\right)\)

Dấu \("="\Leftrightarrow4\left(x^2+2x+5\right)=\dfrac{256}{x^2+2x+5}\)

\(\Leftrightarrow x^2+2x+5=8\Leftrightarrow x^2+2x-3=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

 

 

 

8 tháng 9 2021

P(x)=\(\dfrac{\text{(4x^2+8x^3+20x^2)+(8x^3+16x^2+40x)+(20x^2+40x+100)+256}}{x^2+2x+5}\)

      =(4x^2+8x+20x) +\(\dfrac{256}{x^2+2x+5}\)

áp dụng BĐT Cosi a+b≥\(2\sqrt{ab}\)

=>P(x)≥64

Dấu = xảy ra khi x=-1 hoặc x=3