K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2017

a) \(H=x^2-4x+16\)

\(H=\left(x+2\right)^2+12\ge12\)

vậy min H=12 \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

8 tháng 12 2019

Bài làm

a) xy + y2 - x - y

= ( xy + y2 ) - ( x + y )

= y( x + y ) - ( x + y )

= ( x + y )( y - 1 )


b) 25 - x2 + 4xy - 4y2

= 25 - ( x2 - 4xy + 4y2 )

= 25 - ( x - 2y )2

= ( 5 - x + 2y )( 5 + x - 2y )

c) xy + xz - 2y - 2z

= ( xy + xz ) - ( 2y + 2z )

= x( y + z ) - 2( y + z )

= ( y + z )( x - 2 )


d) x2 - 6xy + 9y2 - 25z2

= ( x2 - 6xy + 9y2 ) - 25z2

= ( x - 3y )2 - 25z2

= ( x - 3y - 5z )( z - 3y + 5z )


e) 3x2 - 3y2 - 12x + 12y

= 3( x - y )( x + y ) - 12( x - y )

= ( x - y )[ 3( x + y ) - 12 ]

f) 4x3 + 4xy2 + 8x2y - 16x

= 4x( x2 + y2 + 2xy - 4 )

= 4x[ ( x + y)2 - 4 ]

= 4x( x + y - 2 )( x + y + 2 )


g) x2 - 5x + 4

= x2 - x - 4x + 4

= x( x - 1 ) - 4( x - 1 )

= ( x - 1 )( x - 4 )


h) x4 + 5x2 + 4

= x4 + x2 + 4x2 + 4

= x2( x2 + 1 ) + 4( x2 + 1 )

= ( x2 + 1 )( x2 + 4 )


i) 2x2 + 3x - 5

= 2x2 - 5x + 2x - 5

= 2x( x + 1 ) - 5( x + 1 )

= ( x + 1 )( 2x - 5 )


k) x3 - 2x2 + 6x - 5 ( không biết làm )
l) x2 - 4x + 3

= ( x2 - 4x + 4 ) - 1

= ( x - 2 )2 - 1

= ( x - 3 )( x - 1 )

# Học tốt #

17 tháng 6 2017

C = x2 - 4x + 16
   = (x2 - 4x + 4) + 12
   = (x - 2)2 + 12

Vậy Cmin = 12 (vì \(\left(x-2\right)^2\ge0\Leftrightarrow\left(x-2\right)^2+12\ge12\))

Còn D mình không biết cách làm

30 tháng 7 2019

Thôi em làm luôn nha:)

\(D=\left(x^2-2.x.3y+9y^2\right)+4\left(x-3y\right)+4+x^2-2.x.6+36+1978\)

\(=\left(x-3y\right)^2+2\left(x-3y\right).2+2^2+\left(x-6\right)^2+1978\)

\(=\left(x-3y+2\right)^2+\left(x-6\right)^2+1978\ge1978\)

Đẳng thức xảy ra x =6, y = 8/3

16 tháng 9 2021

\(a,=\left(x+1\right)^2\\ b,=\left(y-2\right)^2\\ c,=\left(x-3\right)^2\\ d,=\left(a-7\right)^2\\ e,=\left(m-2\right)^2\\ f,=\left(2x-1\right)^2\\ g,=\left(a+5\right)^2\\ h,=\left(z-10^2\right)\\ i,=\left(x+3y\right)^2\\ j,=\left(2x-5b\right)^2\\ k,=\left(a+5\right)^2\\ l,=\left(x^2+1\right)^2\\ m,=\left(y^3-1\right)^2=\left(y-1\right)^2\left(y^2+y+1\right)^2\\ n,=\left(c^5-5\right)^2\\ o,=\left(3x^2+2y\right)^2\\ p,=5m^2n^3\left(5m^2n^3-2\right)\)

9 tháng 10 2021

a)\(x^4+3x^3+x^2+3x=x\left(x^3+3x^2+x+3\right)\)

\(=x\left[x^2\left(x+3\right)+\left(x+3\right)\right]=x\left(x+3\right)\left(x^2+1\right)\)

b) \(x^2+6xy+9y^2-4z^2=\left(x+3y\right)^2-4z^2=\left(x+3y-2z\right)\left(x+3y+2z\right)\)

c) \(=2x\left(x-1\right)-7\left(x-1\right)=\left(x-1\right)\left(2x-7\right)\)

9 tháng 10 2021

\(a,=x^3\left(x+3\right)+x\left(x+3\right)=x\left(x^2+1\right)\left(x+3\right)\\ b,=\left(x+3y\right)^2-4z^2=\left(x+3y+2z\right)\left(x+3y-2z\right)\\ c,=2x^2-2x-7x+7=\left(x-1\right)\left(2x-7\right)\)

28 tháng 9 2021

\(a,\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{7}{4}=0\\ \Leftrightarrow\left(x-y\right)^2+\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}=0\\ \Leftrightarrow x,y\in\varnothing\left[\left(x-y\right)^2+\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}>0\right]\\ b,\Leftrightarrow\left(x^2-2x+1\right)+\left(9y^2+12y+4\right)+\left(4z^2-4z+1\right)+14=0\\ \Leftrightarrow\left(x-1\right)^2+\left(3y+2\right)^2+\left(2z-1\right)^2+14=0\\ \Leftrightarrow x,y,z\in\varnothing\left[\left(x-1\right)^2+\left(3y+2\right)^2+\left(2z-1\right)^2+14\ge14>0\right]\)

\(c,\Leftrightarrow-\left(x^2-10xy+25y^2\right)-\left(y^2-20y+100\right)-50=0\\ \Leftrightarrow-\left(x-5y\right)^2-\left(y-10\right)^2-50=0\\ \Leftrightarrow x,y\in\varnothing\left[-\left(x-5y\right)^2-\left(y-10\right)^2-50\le-50< 0\right]\)

31 tháng 7 2019

\(P=x^2+2y^2-2xy-8y+2018\)

   \(=\left(x+y\right)^2+\left(y-4\right)^2+2002\ge2002\forall x;y\) 

Dấu"=" xảy ra<=> \(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-4\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=0\\y=4\end{cases}}}\)

\(\Rightarrow x=-4\)

Vậy minP=2002 tại  x=-4;y=4

                     

31 tháng 7 2019

a) \(P=x^2+2y^2-2xy-8y+2018\)

\(=\left(x^2-2xy+y^2\right)+\left(y^2-8y+16\right)+2012\)

\(=\left(x-y\right)^2+\left(y-4\right)^2+2012\)

Vì\(\hept{\begin{cases}\left(x-y\right)^2\ge0;\forall x,y\\\left(y-4\right)^2\ge0;\forall x,y\end{cases}}\)

\(\Rightarrow\left(x-y\right)^2+\left(y-4\right)^2\ge0;\forall x,y\)

\(\Rightarrow\left(x-y\right)^2+\left(y-4\right)^2+2012\ge0+2012;\forall x,y\)

Hay \(P\ge2012;\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-4\right)^2=0\end{cases}}\)

                        \(\Leftrightarrow x=y=4\)

Vậy MIN P=2012 \(\Leftrightarrow x=y=4\)

a: Ta có: \(\left(x-1\right)^3+\left(2-x\right)\left(4+2x+x^2\right)+3x\left(x+2\right)=16\)

\(\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x=16\)

\(\Leftrightarrow9x+7=16\)

\(\Leftrightarrow9x=9\)

hay x=1