K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 11 2018

Nhầm xíu, quên không khai căn, thế này mới đúng :D

\(y=\dfrac{\sqrt{26}}{5}\left(\dfrac{5\sqrt{26}}{26}sinx+\dfrac{\sqrt{26}}{26}cosx\right)=\dfrac{\sqrt{26}}{5}sin\left(x+\alpha\right)\)

Với \(\alpha=arccos\dfrac{5\sqrt{26}}{26}\)

Do \(-1\le sin\left(x+\alpha\right)\le1\Rightarrow\dfrac{-\sqrt{26}}{5}\le y\le\dfrac{\sqrt{26}}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}y_{min}=\dfrac{-\sqrt{26}}{5}\\y_{max}=\dfrac{\sqrt{26}}{5}\end{matrix}\right.\)

NV
27 tháng 11 2018

\(y=\dfrac{26}{25}\left(\dfrac{25}{26}sinx+\dfrac{5}{26}.cosx\right)=\dfrac{26}{25}sin\left(x+\alpha\right)\) với \(\alpha=arccos\dfrac{25}{26}\)

Do \(-1\le sin\left(x+\alpha\right)\le1\) \(\Rightarrow\dfrac{-26}{25}\le y\le\dfrac{26}{25}\)

\(\Rightarrow y_{min}=-\dfrac{26}{25}\) ; \(y_{max}=\dfrac{26}{25}\)

NV
20 tháng 6 2019

ĐKXĐ: \(sinx\ne1\Rightarrow x\ne\frac{\pi}{2}+k2\pi\)

(Không cần tìm điều kiện cho căn thức vì biểu thức luôn không âm)

18 tháng 7 2020

Ta có: 

\(-1\le\sin2x\le1\)

=> \(\sqrt{4-2.\left(1\right)^5}-8\le\sqrt{4-2.\left(\sin2x\right)^5}-8\le\sqrt{4-2.\left(-1\right)^5}-8\)

=> \(\sqrt{2}-8\le\sqrt{4-2.\left(\sin2x\right)^5}-8\le\sqrt{6}-8\)

=> tìm ddc min và max

NV
18 tháng 8 2021

ĐKXĐ: \(sinx;cosx\ge0\)

Do \(\left\{{}\begin{matrix}0\le sinx\le1\\0\le cosx\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\sqrt{sinx}\ge sin^2x\\\sqrt{cosx}\ge cos^2x\end{matrix}\right.\)

\(\Rightarrow\sqrt{sinx}+\sqrt{cosx}\ge sin^2x+cos^2x=1\)

\(\Rightarrow y_{min}=1\) (khi \(x=\dfrac{\pi}{2}+k2\pi\) hoặc \(k2\pi\))

Mặt khác áp dụng Bunhiacopxki:

\(y\le\sqrt{2\left(sinx+cosx\right)}\le\sqrt{2\sqrt{2\left(sin^2x+cos^2x\right)}}=\sqrt[4]{8}\)

\(y_{max}=\sqrt[4]{8}\) khi \(x=\dfrac{\pi}{4}+k2\pi\)

Tham khảo: tìm GTLN - GTNN của hàm số : y=sinx cosx sinxcosx - Hoc24

Đặt sinx+cosx=t⇒−2≤t≤2

t2=sin2x+cos2x+2sinx.cosx=1+2sinx.cosx⇒sinx.cosx=t2−12

⇒y=t+t2−12=12t2+t−12

Xét hàm 

NV
18 tháng 8 2021

Đặt \(sinx+cosx=\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=t\Rightarrow t\in\left[-\sqrt{2};\sqrt{2}\right]\)

\(t^2=1+2sinx.cosx\Rightarrow sinx.cosx=\dfrac{t^2-1}{2}\)

\(\Rightarrow y=t+\dfrac{t^2-1}{2}=\dfrac{1}{2}t^2+t-\dfrac{1}{2}\)

Xét hàm \(y=f\left(t\right)=\dfrac{1}{2}t^2+t-\dfrac{1}{2}\) trên \(\left[-\sqrt{2};\sqrt{2}\right]\)

\(-\dfrac{b}{2a}=-1\in\left[-\sqrt{2};\sqrt{2}\right]\)

\(f\left(-\sqrt{2}\right)=\dfrac{1-2\sqrt{2}}{2}\) ; \(f\left(-1\right)=-1\) ; \(f\left(\sqrt{2}\right)=\dfrac{1+2\sqrt{2}}{2}\)

\(\Rightarrow y_{min}=-1\) ; \(y_{max}=\dfrac{1+2\sqrt{2}}{2}\)

21 tháng 5 2021

a)\(y=\sqrt{3}sinx+cosx=2\left(\dfrac{\sqrt{3}}{2}sinx+\dfrac{1}{2}cosx\right)\)\(=2\left(sinx.cos\dfrac{\pi}{6}+cosx.sin\dfrac{\pi}{6}\right)\)\(=2sin\left(x+\dfrac{\pi}{6}\right)\)

Có \(-1\le sin\left(x+\dfrac{\pi}{6}\right)\le1\) \(\Leftrightarrow-2\le2sin\left(x+\dfrac{\pi}{6}\right)\le2\)

\(\Leftrightarrow-2\le y\le2\)

miny=-2 \(\Leftrightarrow sin\left(x+\dfrac{\pi}{6}\right)=-1\)  \(\Leftrightarrow x+\dfrac{\pi}{6}=-\dfrac{\pi}{2}+2k\pi\left(k\in Z\right)\) \(\Leftrightarrow x=-\dfrac{2\pi}{3}+k2\pi\left(k\in Z\right)\)

maxy=2\(\Leftrightarrow sin\left(x+\dfrac{\pi}{6}\right)=1\) \(\Leftrightarrow x+\dfrac{\pi}{6}=\dfrac{\pi}{2}+k2\pi\left(k\in Z\right)\)\(\Leftrightarrow x=\dfrac{\pi}{3}+k2\pi\left(k\in Z\right)\)

b) \(y=sin2x-cos2x=\sqrt{2}sin\left(2x-\dfrac{\pi}{4}\right)\)

Có \(\sqrt{2}\ge\sqrt{2}sin\left(2x-\dfrac{\pi}{4}\right)\ge-\sqrt{2}\)

\(\Leftrightarrow\sqrt{2}\ge y\ge-\sqrt{2}\)

miny=\(-\sqrt{2}\) \(\Leftrightarrow sin\left(2x-\dfrac{\pi}{4}\right)=-1\)\(\Leftrightarrow2x-\dfrac{\pi}{4}=-\dfrac{\pi}{2}+k2\pi\left(k\in Z\right)\)\(\Leftrightarrow x=-\dfrac{\pi}{8}+k\pi\left(k\in Z\right)\)

maxy=\(\sqrt{2}\Leftrightarrow sin\left(2x-\dfrac{\pi}{4}\right)=1\)\(\Leftrightarrow x=\dfrac{3\pi}{8}+k\pi\left(k\in Z\right)\)

c) \(y=3sinx+4cosx=5\left(\dfrac{3}{5}sinx+\dfrac{4}{5}cosx\right)\)

Đặt \(cosa=\dfrac{3}{5}\) và \(sina=\dfrac{4}{5}\)(vì cos2a+sin2a=1)

\(y=5\left(sinx.cosa+cosx.sina\right)\)\(=5sin\left(x+a\right)\)

\(\Rightarrow-5\le y\le5\)

miny=-5 <=> \(sin\left(x+a\right)=-1\)\(\Leftrightarrow x=-\dfrac{\pi}{2}-arc.sina+k2\pi\left(k\in Z\right)\)

maxy=5 <=> \(sin\left(x+a\right)=1\)\(\Leftrightarrow x=\dfrac{\pi}{2}-arc.sina+k2\pi\left(k\in Z\right)\)

(P/s1:cái x ở câu c ấy trông nó ngu ngu??
 P/s2:sau khi load lại câu hỏi ở 1 tab khác ,thấy 1 câu trả lời nhưng vẫn đăng vì cảm thấy bỏ đi hơi phí :?)

21 tháng 5 2021

Áp dụng quy tắc sau: Nếu \(a\sin x+b\cos y=c\Leftrightarrow a^2+b^2\ge c^2\)

a/ \(3+1\ge y^2\Leftrightarrow4\ge y^2\Leftrightarrow-2\le y\le2\)

\(y_{max}=2\Leftrightarrow\sqrt{3}\sin x+\cos x=2\Leftrightarrow\dfrac{\sqrt{3}}{2}\sin x+\dfrac{1}{2}\cos x=1\Leftrightarrow\cos\dfrac{\pi}{6}.\sin x+\sin\dfrac{\pi}{6}.\cos x=1\)

\(\Rightarrow\sin\left(x+\dfrac{\pi}{6}\right)=1\Leftrightarrow x+\dfrac{\pi}{6}=\dfrac{\pi}{2}+k2\pi\Leftrightarrow x=\dfrac{\pi}{3}+k2\pi\)

\(y_{min}=-2\Leftrightarrow\sin\left(x+\dfrac{\pi}{6}\right)=-1\Leftrightarrow x+\dfrac{\pi}{6}=-\dfrac{\pi}{2}+k2\pi\Leftrightarrow x=-\dfrac{2}{3}\pi+k2\pi\)

26 tháng 8 2016

\(e.y=2sin^2x-cos2x=1-cos2x-cos2x=1-2cos2x\)

Vì \(-1\le cos2x\le1\Leftrightarrow-2\le-2cos2x\le2\Leftrightarrow-1\le1-2cos2x\le3\)

Vậy \(y_{max}=3khicos2x=-1\Leftrightarrow x=\frac{\pi}{2}+k\pi\) \(y_{min}=-1khicos2x=-1\Leftrightarrow cos2x=1\Leftrightarrow x=k\pi\)

27 tháng 8 2016

cảm ơn bạn 

AH
Akai Haruma
Giáo viên
5 tháng 9 2021

Lời giải:
\(x\in [-\sqrt{2}; \sqrt{2}]\Rightarrow x^2\leq 2\Rightarrow \sqrt{x^2+1}\leq \sqrt{3}\)

\(y=\frac{x+1}{\sqrt{x^2+1}}\geq \frac{x+1}{\sqrt{3}}\geq \frac{-\sqrt{2}+1}{\sqrt{3}}\)

Vậy $y_{\min}=\frac{-\sqrt{2}+1}{\sqrt{3}}$ khi $x=-\sqrt{2}$

$y^2=\frac{x^2+2x+1}{x^2+1}=1+\frac{2x}{x^2+1}$

$y^2=2+\frac{2x-x^2-1}{x^2+1}=2-\frac{(x-1)^2}{x^2+1}\leq 2$

$\Rightarrow y\leq \sqrt{2}$

Vậy $y_{\max}=\sqrt{2}$ khi $x=1$

 

 

20 tháng 4 2022

a. \(y=6x^4-6x-\sqrt{7}\)

\(\Rightarrow y'=4.6.x^3-6=24x^3-6\)

b. \(y=\left(4-3x\right)\left(2x^2+3\right)\)

\(y'=-3\left(2x^2+3\right)+4x\left(4-3x\right)=-6x^2-9+16x-12x^2=-18x^2+16x-9\)

23 tháng 4 2022

????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????