Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(0\le cos^2x\le1\Rightarrow2\le3-cos^2x\le3\)
\(\Rightarrow\frac{8}{3}\le y\le4\)
\(y_{min}=\frac{8}{3}\) khi \(cosx=0\)
\(y_{max}=4\) khi \(cos^2x=1\)
b/ \(0\le sin^23x\le1\Rightarrow1\le\sqrt{2-sin^23x}\le\sqrt{2}\)
\(\Rightarrow\frac{1}{\sqrt{2}}\le y\le1\)
\(y_{min}=\frac{1}{\sqrt{2}}\) khi \(sin3x=0\)
\(y_{max}=1\) khi \(sin^23x=1\)
c/ \(y=\sqrt{3}\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)+sin2x+1\)
\(=-\sqrt{3}\left(cos^2x-sin^2x\right)+sin2x+1\)
\(=-\sqrt{3}cos2x+sin2x+1\)
\(=2\left(\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x\right)+1=2sin\left(2x-\frac{\pi}{3}\right)+1\)
Do \(-1\le sin\left(2x-\frac{\pi}{3}\right)\le1\Rightarrow-1\le y\le3\)
\(y_{min}=-1\) khi \(sin\left(2x-\frac{\pi}{3}\right)=-1\)
\(y_{max}=3\) khi \(sin\left(2x-\frac{\pi}{3}\right)=1\)
23.
\(tan^2x\ge0\Rightarrow y\le2\)
\(y_{max}=2\) khi \(tanx=0\)
\(y_{min}\) không tồn tại
24.
\(-1\le cosx\le1\Rightarrow0< 1+cosx\le2\)
\(\Rightarrow y\ge\frac{1}{2}\)
\(y_{min}=\frac{1}{2}\) khi \(cosx=1\)
\(y_{max}\) ko tồn tại
19.
\(y=\sqrt{5-\frac{1}{2}\left(2sinxcosx\right)^2}=\sqrt{5-\frac{1}{2}sin^22x}\)
\(0\le sin^22x\le1\Rightarrow\frac{3\sqrt{2}}{2}\le y\le\sqrt{5}\)
\(y_{min}=\frac{3\sqrt{2}}{2}\) khi \(sin^22x=1\)
\(y_{max}=\sqrt{5}\) khi \(sin^22x=0\)
21.
\(y=2sin^2x-\left(1-2sin^2x\right)=4sin^2x-1\)
\(0\le sin^2x\le1\Rightarrow-1\le y\le3\)
\(y_{min}=-1\) khi \(sin^2x=0\)
\(y_{max}=3\) khi \(sin^2x=1\)
d/
\(\Leftrightarrow1-cos2x+\sqrt{3}sin2x+4=4\left(\sqrt{3}sinx+cosx\right)\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x+\frac{5}{2}=4\left(\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx\right)\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)+\frac{5}{2}=4sin\left(x+\frac{\pi}{6}\right)\)
\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)+\frac{5}{2}=4sin\left(x+\frac{\pi}{6}\right)\)
\(\Leftrightarrow1-2sin^2\left(x+\frac{\pi}{6}\right)+\frac{5}{2}=4sin\left(x+\frac{\pi}{6}\right)\)
\(\Leftrightarrow2sin^2\left(x+\frac{\pi}{6}\right)+4sin\left(x+\frac{\pi}{6}\right)-\frac{7}{2}=0\)
\(\Rightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{6}\right)=\frac{-2+\sqrt{11}}{2}\\sin\left(x+\frac{\pi}{6}\right)=\frac{-2-\sqrt{11}}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+arcsin\left(\frac{-2+\sqrt{11}}{2}\right)+k2\pi\\x=\frac{5\pi}{6}-arcsin\left(\frac{-2+\sqrt{11}}{2}\right)+k2\pi\end{matrix}\right.\)
c/
\(\Leftrightarrow1-cos2x+\sqrt{3}sin2x+2\sqrt{3}sinx+2cosx=2\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x+2\left(\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx\right)=\frac{1}{2}\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)=\frac{1}{2}\)
\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)
\(\Leftrightarrow cos2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)
\(\Leftrightarrow1-2sin^2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)
\(\Leftrightarrow-2sin^2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)+\frac{1}{2}=0\)
\(\Rightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{6}\right)=\frac{1+\sqrt{2}}{2}\left(l\right)\\sin\left(x+\frac{\pi}{6}\right)=\frac{1-\sqrt{2}}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{6}=arcsin\left(\frac{1-\sqrt{2}}{2}\right)+k2\pi\\x+\frac{\pi}{6}=\pi-arcsin\left(\frac{1-\sqrt{2}}{2}\right)+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=...\)
\(y=2sin^2x+3sinx.cosx+cos^2x\)
\(=-\left(1-2sin^2x\right)+\dfrac{3}{2}sin2x+\dfrac{1}{2}\left(2cos^2x-1\right)+\dfrac{1}{2}\)
\(=-cos2x+\dfrac{3}{2}sin2x+\dfrac{1}{2}cos2x+\dfrac{1}{2}\)
\(=\dfrac{3}{2}sin2x-\dfrac{1}{2}cos2x+\dfrac{1}{2}\)
\(=\dfrac{\sqrt{10}}{2}\left(\dfrac{3}{\sqrt{10}}sin2x-\dfrac{1}{\sqrt{10}}cos2x\right)+\dfrac{1}{2}\)
\(=\dfrac{\sqrt{10}}{2}sin\left(2x-arccos\dfrac{3}{\sqrt{10}}\right)+\dfrac{1}{2}\)
Vì \(sin\left(2x-arccos\dfrac{3}{\sqrt{10}}\right)\in\left[-1;1\right]\)
\(\Rightarrow y=\dfrac{\sqrt{10}}{2}sin\left(2x-arccos\dfrac{3}{\sqrt{10}}\right)+\dfrac{1}{2}\in\left[-\dfrac{\sqrt{10}}{2}+\dfrac{1}{2};\dfrac{\sqrt{10}}{2}+\dfrac{1}{2}\right]\)
\(\Rightarrow y_{min}=-\dfrac{\sqrt{10}}{2}+\dfrac{1}{2}\Leftrightarrow sin\left(2x-arccos\dfrac{3}{\sqrt{10}}\right)=-1\Leftrightarrow...\)
\(y_{max}=\dfrac{\sqrt{10}}{2}+\dfrac{1}{2}\Leftrightarrow sin\left(2x-arccos\dfrac{3}{\sqrt{10}}\right)=1\Leftrightarrow...\)
2.Biểu thức luôn xác định
\(y=\dfrac{4}{\sqrt{5-2cos^2sin^2x}}=\dfrac{4}{\sqrt{5-\dfrac{1}{2}sin^22x}}\)
Có: \(1\ge sin^22x\ge0\)
\(\Leftrightarrow-\dfrac{1}{2}\le-\dfrac{1}{2}sin^22x\le0\)
\(\Leftrightarrow\dfrac{3\sqrt{2}}{2}\le\sqrt{5-\dfrac{1}{2}sin^22x}\le\sqrt{5}\)
\(\Rightarrow\dfrac{4\sqrt{2}}{3}\ge y\ge\dfrac{4\sqrt{5}}{5}\)
miny=\(\dfrac{4\sqrt{5}}{5}\) \(\Leftrightarrow sin2x=0\)\(\Leftrightarrow x=\dfrac{k\pi}{2}\left(k\in Z\right)\)
maxy=\(\dfrac{4\sqrt{2}}{3}\Leftrightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{-\pi}{4}+k\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)
1.Biểu thức luôn xác định
Xét \(sin2x=0\) \(\Leftrightarrow x=\dfrac{k\pi}{2}\left(k\in Z\right)\) khi đó \(y=-6\)
Xét \(sin2x\ne0\)
=> \(1\ge sin^52x\ge-1\)
\(\Leftrightarrow4-1\le4-sin^52x\le4+1\)
\(\Leftrightarrow\sqrt{3}\le\sqrt{4-sin^52x}\le\sqrt{5}\)
\(\Leftrightarrow\sqrt{3}-8\le y\le\sqrt{5}-8\)
\(y=\sqrt{3}-8< -6\) , \(y=\sqrt{5}-8>-6\)
=>min= \(\sqrt{3}-8\) \(\Leftrightarrow sin2x=1\left(tm\right)\) \(\Leftrightarrow x=\dfrac{\pi}{4}+k\pi\left(k\in Z\right)\)
maxy=\(\sqrt{5}-8\)\(\Leftrightarrow sin2x=-1\left(tm\right)\) \(\Leftrightarrow x=-\dfrac{\pi}{4}+k\pi\left(k\in Z\right)\)
(câu này e ko chắc)
a/ \(0\le cos^2x\le1\Rightarrow2\le y\le\sqrt{7}\)
\(y_{min}=2\) khi \(cos^2x=1\)
\(y_{max}=\sqrt{7}\) khi \(cos^2x=0\)
b/ \(y=\frac{2}{1+tan^2x}=\frac{2}{\frac{1}{cos^2x}}=2cos^2x\le2\)
\(\Rightarrow y_{max}=2\) khi \(cos^2x=1\)
\(y_{min}\) ko tồn tại
c/ \(y=1-cos2x+\sqrt{3}sin2x=2\left(\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x\right)+1\)
\(y=2sin\left(2x-\frac{\pi}{6}\right)+1\)
Do \(-1\le sin\left(2x-\frac{\pi}{6}\right)\le1\Rightarrow-1\le y\le3\)