Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu \(x<0\) thì khi \(x=-0,0000000000......1\), biểu thức có giá trị gần âm vô cùng (không tồn tại GTNN)
Giải bài toàn với x > 0:
\(A=\left(x^2+\frac{1}{8x}+\frac{1}{8x}\right)+3\left(x^2-x+\frac{1}{4}\right)-\frac{3}{4}\)
\(=x^2+\frac{1}{8x}+\frac{1}{8x}+3\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)
\(\ge3\sqrt[3]{x^2.\frac{1}{8x}.\frac{1}{8x}}+0-\frac{3}{4}=0\)
Dấu bằng xảy ra khi \(\left(x^2=\$\frac{1}{8x}\text{ và }x-\frac{1}{2}=0\right)\Leftrightarrow x=\frac{1}{2}.\)
+Cách 2: ta có: \(4x^2-3x+\frac{1}{4x}=\frac{16x^3-12x^2+1}{4x}=\frac{\left(2x-1\right)^2\left(4x+1\right)}{4x}\ge0\forall x>0\)
\(M=x^4-2x^3+3x^2-4x+2025\\=(x^4-2x^3+x^2)+(2x^2-4x+2)+2023\\=x^2(x^2-2x+1)+2(x^2-2x+1)+2023\\=(x^2-2x+1)(x^2+2)+2023\\=(x-1)^2(x^2+2)+2023\)
Ta thấy: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\forall x\\x^2+2\ge2>0\forall x\end{matrix}\right.\)
\(\Rightarrow\left(x-1\right)^2\left(x^2+2\right)\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2\left(x^2+2\right)+2023\ge2023\forall x\)
\(\Rightarrow M\ge2023\forall x\)
Dấu \("="\) xảy ra khi: \(x-1=0\Leftrightarrow x=1\)
Vậy \(Min_M=2023\) khi \(x=1\).
\(M=\)như trên
\(=>M=4x^2-4x+1+x+\frac{1}{4x}+2010\)
\(=>M=\left(4x^2-4x+1\right)+\left(x+\frac{1}{4x}\right)+2010\)
\(=>M=\left(2x-1\right)^2+\left(x+\frac{1}{4x}\right)+2010\)
Áp dụng BĐT Cô- si cho 2 số không âm, ta có:
\(x+\frac{1}{4x}\ge2\sqrt{x.\frac{1}{4x}}=2\sqrt{\frac{1}{4}}=1\)
\(=>M=\left(2x-1\right)^2+\left(x+\frac{1}{4x}\right)+2010\ge0+1+2010=2011\\ \)
=>minM=2011 khi x=\(\frac{1}{2}\)
a, \(x^4-4x^3-6x^2-4x+1=0\)(*)
<=> \(x^4+4x^2+1-4x^3-4x+2x^2-12x^2=0\)
<=> \(\left(x^2-2x+1\right)^2=12x^2\)
<=>\(\left(x-1\right)^4=12x^2\) <=> \(\left[{}\begin{matrix}\left(x-1\right)^2=\sqrt{12}x\\\left(x-1\right)^2=-\sqrt{12}x\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x^2-2x+1-\sqrt{12}x=0\left(1\right)\\x^2-2x+1+\sqrt{12}x=0\left(2\right)\end{matrix}\right.\)
Giải (1) có: \(x^2-2x+1-\sqrt{12}x=0\)
<=> \(x^2-2x\left(1+\sqrt{3}\right)+\left(1+\sqrt{3}\right)^2-\left(1+\sqrt{3}\right)^2+1=0\)
<=> \(\left(x-1-\sqrt{3}\right)^2-3-2\sqrt{3}=0\)
<=> \(\left(x-1-\sqrt{3}\right)^2=3+2\sqrt{3}\) <=> \(\left[{}\begin{matrix}x-1-\sqrt{3}=\sqrt{3+2\sqrt{3}}\\x-1-\sqrt{3}=-\sqrt{3+2\sqrt{3}}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\left(ktm\right)\\x=-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\left(tm\right)\end{matrix}\right.\)
=> \(x=-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\)
Giải (2) có: \(x^2-2x+1+\sqrt{12}x=0\)
<=> \(x^2-2x\left(1-\sqrt{3}\right)+\left(1-\sqrt{3}\right)^2-\left(1-\sqrt{3}\right)^2+1=0\)
<=> \(\left(x+\sqrt{3}-1\right)^2=3-2\sqrt{3}\) .Có VP<0 => PT (2) vô nghiệm
Vậy pt (*) có nghiệm x=\(-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\)
a) \(2x^2-5x+1=0\)
\(\Delta=b^2-4ac\Rightarrow\left(-5\right)^2-4.2.1=17>0\)
Phương trình có 2 nghiệm phân biệt:
\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)+\sqrt{17}}{2.2}=\dfrac{5+\sqrt{17}}{4}\)
\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)-\sqrt{17}}{2.2}=\dfrac{5-\sqrt{17}}{4}\)
___________________________________________________
b) \(4x^2+4x+1=0\)
\(\Delta=b^2-4ac\Rightarrow4^2-4.4.1=0\)
Vậy phương trình có nghiệm kép:
___________________________________________________
c) \(5x^2-x+2=0\)
\(\Delta=b^2-4a\Rightarrow\left(-1\right)^2-4.5.2=-39\)
Vậy phương trình vô nghiệm.
\(M=\left(x^2+\frac{1}{8x}+\frac{1}{8x}\right)+3\left(x^2-x\right)\ge3\sqrt[3]{x^2.\frac{1}{8x}.\frac{1}{8x}}+3\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)
\(\ge\frac{3}{4}+0-\frac{3}{4}=0\)
Dấu bằng xảy ra khi \(x=\frac{1}{2}.\)
\(KL:Min\text{ }M=0\)