Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 2x^2 + y^2 - 2xy -2x+3
A= x^2-2xy + y^2 + x^2 - 2x+ 1 +2
A= (x-y)^2 + (x-1)^2 + 2
(x-y)^2> hoặc = 0 với mọi giá trị của x
(x-1)^2 > hoặc =0 với mọi giá trị của x
=> (x-y)^2 + (x-1)^2 > hoặc =0 với mọi giá trị của x
=> (x-y)^2 + (x-1)^2 + 2 > hoặc =2
=> A lớn hơn hoặc bằng 2
=> GTNN của A=2 tại x=y=1
\(A=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+4\\ A=\left(x-y\right)^2+\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=1\end{matrix}\right.\Leftrightarrow x=y=1\)
\(-2x^2-2xy-y^2+2x-2y-2=-\left[y^2+2y\left(x+1\right)+\left(x+1\right)^2\right]-\left(x^2-4x+4\right)+3=-\left(y+x+1\right)^2-\left(x-2\right)^2+3\le3\)
\(max=3\Leftrightarrow\) \(\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)
A= -x2+2x+3
=>A= -(x2-2x+3)
=>A= -(x2-2.x.1+1+3-1)
=>A=-[(x-1)2+2]
=>A= -(x+1)2-2
Vì -(x+1)2 ≤0=> A≤-2
Dấu "=" xảy ra khi
-(x+1)2=0 => x=-1
Vây A lớn nhất= -2 khi x= -1
B=x2-2x+4y2-4y+8
=> B= (x2-2x+1)+(4y2-4y+1)+6
=> B=(x-1)2+(2y+1)2+6
=> B lớn nhất=6 khi x=1 và y=-1/2
\(a,=3\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=3\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\)
Dấu \("="\Leftrightarrow x=\dfrac{1}{2}\)
\(b,=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
\(c,=\left(x^2-2xy+y^2\right)+x^2+1=\left(x-y\right)^2+x^2+1\ge1\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=0\end{matrix}\right.\Leftrightarrow x=y=0\)
\(a.\left(x^2+4x+4\right)+\left(x^2-6x+9\right)=2x^2+14x\)
\(x^2+4x+4+x^2-6x+9-2x^2-14x=0\)
\(-18x+13=0\)
\(x=\dfrac{13}{18}\)
Vậy \(S=\left\{\dfrac{13}{18}\right\}\)
\(b.\left(x-1\right)^3-125=0\)
\(\left(x-1\right)^3=125\)
\(x-1=5\)
\(x=6\)
Vậy \(S=\left\{6\right\}\)
\(c.\left(x-1\right)^2+\left(y +2\right)^2=0\)
\(Do\left(x-1\right)^2\ge0\forall x;\left(y+2\right)^2\ge0\forall y\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)
Mà \(\left(x-1\right)^2+\left(y+2\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy \(S=\left\{1;-2\right\}\)
\(d.x^2-4x+4+x^2-2xy+y^2=0\)
\(\left(x-2\right)^2+\left(x-y\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-2\right)^2=0\\\left(x-y\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-y=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)
Vậy \(S=\left\{2;2\right\}\)
Xét biểu thức \(A=x\left(x-3\right)\left(x-4\right)\left(x-7\right)=\left(x^2-7x\right)\left(x^2-7x+12\right)\)
Đặt \(x^2-7x+6\rightarrow t\)Khi đó \(A=\left(t-6\right)\left(t+6\right)=t^2-36\ge-36\)
Dấu "=" xảy ra khi và chỉ khi \(t=0\)hay \(x^2-7x+6=0=>\left(x-6\right)\left(x-1\right)=0=>\orbr{\begin{cases}x=6\\x=1\end{cases}}\)
Vậy GTNN của biểu thức \(A=-36\)đạt được khi \(x=6orx=1\)
Xét biểu thức \(B=2x^2+y^2-2xy-2x+3=\left(x^2-2xy+y^2\right)+x^2-2x+1+2\)
\(=\left(x-y\right)^2+\left(x-1\right)^2+2\ge2\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x-y=0\\x-1=0\end{cases}< =>\hept{\begin{cases}1-y=0\\x=1\end{cases}}< =>\hept{\begin{cases}x=1\\y=1\end{cases}< =>x=y=1}}\)
Vậy GTNN của biểu thức \(B=2\)đạt được khi \(x=y=1\)
Ta có: \(P=2x-2xy-2x^2-y^2\)
\(P=-x^2-2xy-y^2-x^2+2x\)
\(P=-\left(x^2+2xy+y^2\right)-\left(x^2-2x+1\right)+1\)
\(P=-\left(x+y\right)^2-\left(x-1\right)^2+1\)
\(P=-\left[\left(x+y\right)^2+\left(x-1\right)^2\right]+1\le1\forall x;y\)
Vậy GTLN của P là 1 khi x=-1; y=1.
\(a,A=x\left(x-3\right)\left(x-4\right)\left(x-7\right)\)
\(=x\left(x-7\right)\left(x-3\right)\left(x-4\right)\)
\(=\left(x^2-7x\right)\left(x^2-7x+12\right)\)
Đặt \(x^2-7x+6=t\)ta có:
\(A=\left(t-6\right)\left(t+6\right)=t^2-36\ge-36\)
Vậy \(Min_A=-36\)khi \(t=0\Leftrightarrow x^2-7x+6=0\)
\(\Leftrightarrow x^2-6x-x+6=0\)
\(\Leftrightarrow x\left(x-6\right)-\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-6\right)=0\Rightarrow\left[{}\begin{matrix}x-1=0\\x-6=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=6\end{matrix}\right.\)\(b,B=2x^2+y^2-2xy-2x+3\)
\(=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+2\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+2\ge2\)
Vậy \(Min_B=2\)khi \(\left[{}\begin{matrix}x-y=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=1\\x=1\end{matrix}\right.\)
\(c,C=x^2+y^2-3x+3y\)
\(=\left(x^2-3x+\dfrac{9}{4}\right)+\left(y^2+3y+\dfrac{9}{4}\right)-\dfrac{9}{2}\)
\(=\left(x-\dfrac{3}{2}\right)^2+\left(y+\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge\dfrac{-9}{2}\)
Vậy \(Min_C=\dfrac{-9}{2}\)khi \(\left[{}\begin{matrix}x-\dfrac{3}{2}=0\\y+\dfrac{3}{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\y=-\dfrac{3}{2}\end{matrix}\right.\)
nếu bạn tả lời vào lúc sớm vào hôm qua thi tốt quá
mình đi học thêm lúc tối qua thấy giải lun r
A= 2x2+y2-2xy-2x+3
=(x2-2xy+y2)+(x2-2x+1)+2
=(x-y)2+(x-1)2+2 lớn hỏn hoặc bằng 2
Vậy MIN của A bằng 2 khi và chỉ khi x=y=1