K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2017

a) H=x2 - 4x +16

<=> H=x2 -4x + 4 + 12

<=> H=(x-2)2 +12 \(\ge12\)

Vậy Min H = 12

Dấu "=" xảy ra khi x=2

17 tháng 6 2017

\(K=x^2-6xy+9y^2+4\left(x-3y\right)+4+x^2-12x+36+1978\)

\(K=\left(x-3y\right)^2+4\left(x-3y\right)+2^2+\left(x-6\right)^2+1978\)

\(K=\left(x-3y+2\right)^2+\left(x-6\right)^2+1978\ge1978\)

Vậy Min K =1978

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x-3y+2=0\\x-6=0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}y=\dfrac{8}{3}\\x=6\end{matrix}\right.\)

16 tháng 6 2017

Nỗi hứng lm cho vui!

Bài 1:

a) H = \(x^2-4x+16=\left(x^2-4x+4\right)+12=\left(x-2\right)^2+12\)

\(\left(x-2\right)^2\ge0\) => H \(\ge\) 12

=> Dấu = xảy ra <=> \(x=2\)

b) K = \(2x^2+9y^2-6xy-8x-12y+2018\)

= \(\left(x^2-6xy+9y^2\right)+4\left(x-3y\right)+\left(x^2-12x+36\right)+1982\)

= \(\left(x-3y\right)^2+4\left(x-3y\right)+4+\left(x-6\right)^2+1978\)

= \(\left(x-3y+2\right)^2+\left(x-2\right)^2+1978\)

\(\left\{{}\begin{matrix}\left(x-3y+2\right)^2\ge0\\\left(x-6\right)^2\ge0\end{matrix}\right.\) => K \(\ge\) 1978

=> Dấu = xảy ra <=> \(\left\{{}\begin{matrix}y=\dfrac{2+x}{3}\\x=6\end{matrix}\right.\) => \(x=6;y=\dfrac{8}{3}\)

16 tháng 6 2017

Bài 2:

a) P = \(-x^2-4x+16=-\left(x^2+4x+4\right)+20\)

= \(-\left(x+2\right)^2+20\le20\)

=> Dấu = xảy ra <=> \(x=-2\)

b) \(Q=-x^2+2xy-4y^2+2x+10y-2017\)

= \(-\left[\left(x^2-2xy+y^2\right)+3\left(y^2-4y+4\right)-2\left(x-y\right)+2005\right]\)

= \(-\left[\left(x-y\right)^2-2\left(x-y\right)+1+3\left(y-2\right)^2+2004\right]\)

= \(-\left[\left(x-y-1\right)^2+3\left(y-2\right)^2\right]-2004\)

\(\left\{{}\begin{matrix}-\left(x-y-1\right)^2\le0\\3\left(y-2\right)^2\le0\end{matrix}\right.\) => Q \(\le-2004\)

=> Dấu = xảy ra <=> \(\left\{{}\begin{matrix}x=y+1\\y=2\end{matrix}\right.\) <=> \(x=3;y=2\)

30 tháng 8 2021

a) \(A=x^2-4x+1=\left(x-2\right)^2-3\ge-3\)

\(minA=-3\Leftrightarrow x=2\)

b) \(B=-x^2-8x+5=-\left(x+4\right)^2+21\le21\)

\(maxB=21\Leftrightarrow x=-4\)

c) \(C=2x^2-8x+19=2\left(x-2\right)^2+11\ge11\)

\(minC=11\Leftrightarrow x=2\)

d) \(D=-3x^2-6x+1=-3\left(x+1\right)^2+4\le4\)

\(maxD=4\Leftrightarrow x=-1\)

30 tháng 8 2021

a) A = (x-2)^2 - 3 >= -3

--> A nhỏ nhất bằng -3

 <=> x = 2

`@` `\text {Ans}`

`\downarrow`

`a)`

Thu gọn:

`P(x)=`\(5x^4 + 3x^2 - 3x^5 + 2x - x^2 - 4 +2x^5\)

`= (-3x^5 + 2x^5) + 5x^4 + (3x^2 - x^2) + 2x - 4`

`= -x^5 + 5x^4 + 2x^2 + 2x - 4`

`Q(x) =`\(x^5 - 4x^4 + 7x - 2 + x^2 - x^3 + 3x^4 - 2x^2\)

`= x^5 + (-4x^4 + 3x^4) - x^3 + (x^2 - 2x^2) + 7x - 2`

`= x^5 - x^4 - x^3 - x^2 + 7x - 2`

`@` Tổng:

`P(x)+Q(x)=`\((-x^5 + 5x^4 + 2x^2 + 2x - 4) + (x^5 - x^4 - x^3 - x^2 + 7x - 2)\)

`= -x^5 + 5x^4 + 2x^2 + 2x - 4 + x^5 - x^4 - x^3 - x^2 + 7x - 2`

`= (-x^5 + x^5) - x^3 + (5x^4 - x^4) + (2x^2 - x^2) + (2x + 7x) + (-4-2)`

`= 4x^4 - x^3 + x^2 + 9x - 6`

`@` Hiệu:

`P(x) - Q(x) =`\((-x^5 + 5x^4 + 2x^2 + 2x - 4) - (x^5 - x^4 - x^3 - x^2 + 7x - 2)\)

`= -x^5 + 5x^4 + 2x^2 + 2x - 4 - x^5 + x^4 + x^3 + x^2 - 7x + 2`

`= (-x^5 - x^5) + (5x^4 + x^4) + x^3 + (2x^2 + x^2) + (2x - 7x) + (-4+2)`

`= -2x^5 + 6x^4 + x^3 + 3x^2 - 5x - 2`

`b)`

`@` Thu gọn:

\(H (x) = ( 3x^5 - 2x^3 + 8x + 9) - ( 3x^5 - x^4 + 1 - x^2 + 7x)\)

`= 3x^5 - 2x^3 + 8x + 9 - 3x^5 + x^4 - 1 + x^2 - 7x`

`= (3x^5 - 3x^5) + x^4 - 2x^3 - x^2 + (8x + 7x) + (9+1)`

`= x^4 - 2x^3 - x^2 + 15x + 10`

\(R( x) = x^4 + 7x^3 - 4 - 4x ( x^2 + 1) + 6x\)

`= x^4 + 7x^3 - 4 - 4x^3 - 4x + 6x`

`= x^4 + (7x^3 - 4x^3) + (-4x + 6x) - 4`

`= x^4 + 3x^3 + 2x - 4`

`@` Tổng:

`H(x)+R(x)=` \((x^4 - 2x^3 - x^2 + 15x + 10)+(x^4 + 3x^3 + 2x - 4)\)

`= x^4 - 2x^3 - x^2 + 15x + 10+x^4 + 3x^3 + 2x - 4`

`= (x^4 + x^4) + (-2x^3 + 3x^3) - x^2 + (15x + 2x) + (10-4)`

`= 2x^4 + x^3 - x^2 + 17x + 6`

`@` Hiệu: 

`H(x) - R(x) =`\((x^4 - 2x^3 - x^2 + 15x + 10)-(x^4 + 3x^3 + 2x - 4)\)

`=x^4 - 2x^3 - x^2 + 15x + 10-x^4 - 3x^3 - 2x + 4`

`= (x^4 - x^4) + (-2x^3 - 3x^3) - x^2 + (15x - 2x) + (10+4)`

`= -5x^3 - x^2 + 13x + 14`

`@` `\text {# Kaizuu lv u.}`

14 tháng 4 2021

a, Ta có :  \(h\left(x\right)=f\left(x\right)+g\left(x\right)\)

hay \(h\left(x\right)=-x^5-7x^4-2x^3+x^2+4x+9+x^5+7x^4+2x^3+2x^2-3x-9\)

\(h\left(x\right)=3x^2+x\)

b, Đặt \(3x^2+x=0\Leftrightarrow x\left(3x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{3}\end{matrix}\right.\)

Vậy nghiệm của đa thức h(x) là x = -1/3 ; x = 0

c, Ta có :  \(k\left(x\right)=f\left(x\right)-g\left(x\right)\)

hay \(k\left(x\right)=-x^5-7x^4-2x^3+x^2+4x+9-x^5-7x^4-2x^3-2x^2+3x+9\)

\(k\left(x\right)=-2x^5-14x^4-4x^3-x^2+7x+18\)

14 tháng 4 2021

f(x)=-x5-7x-2x3+x2+4x+9

g(x)=x5+7x4+2x3+2x2-3x-9

Tính

a)h(x)=f(x)+g(x)

Ta có: h(x) = f(x) + g(x)

= (-x5-7x-2x3+x2+4x+9) + (x5+7x4+2x3+2x2-3x-9)

= (x5-x5) + (7x4-7x4) + (2x3-2x3) + (x2+2x2)+ (4x-3x) + (9-9)

=3x2+x

b)Tìm nghiệm của h(x)

h(x) = 0 <=> 3x2+x= 0 

<=> x(3x+1) =0 <=> x= 0 hoặc x =-1/3

Vậy nghiệm của h(x) là x thuộc {0;-1/3}

c)k(x)=f(x)-g(x)

=(-x5-7x-2x3+x2+4x+9) - (x5+7x4+2x3+2x2-3x-9)

= (-x5-x5) + (-7x4-7x4) + (-2x3-2x3) + (x2-2x2) (4x+3x) + (9+9)

=-2x5-14x-4x3-x2+7x+19

4 tháng 6 2018

h(x)=5x+1

nghiệm_của_đa_thức_h(x)_là_-1/5

1 tháng 5 2017

a)h(x)=f(x)-g(x)

        =(2x3 +3x2 -2x +3)-(2x3 +3x2 -7x +2)

        =2x3 + 3x2 - 2x +3 - 2x3 -3x2 + 7x -2

        =5x+1

b)h(x)=5x+1=0

=>5x=-1

    x=\(\frac{-1}{5}\)

4 tháng 1 2018

c. Ta có h(x) = 0 ⇒ 5x + 1 = 0 ⇒ x = -1/5

Vậy nghiệm của đa thức h(x) là x = -1/5 (1 điểm)