Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk làm dùm a) nhé, b) tuong tu
a) x = 1 ; -3/2 ; 9
thay vào ta có GTNN = 13
\(A=2+\frac{21}{\left(x+3y\right)^2}+5\left|x+5\right|+14\)
Ta có:
\(\left(x+3y\right)^2\ge0;\left|x+5\right|\ge0\)
\(\Leftrightarrow\left(x+3y\right)^2+5\left|x+5\right|+14\ge14\)
\(\Leftrightarrow\frac{21}{\left(x+3y\right)^2}+5\left|x+5\right|+14\le\frac{21}{14}=\frac{3}{2}\)
\(\Leftrightarrow A\le\frac{2}{3}+\frac{3}{2}=\frac{13}{6}\)
Dấu '' = '' xảy ra khi:
\(x+5=0\Leftrightarrow x=-5\)
\(x+3y=0\Leftrightarrow y=\frac{-x}{3}=\frac{5}{3}\)
Vậy \(MaxA=\frac{13}{6}\Leftrightarrow x=-5;y=\frac{5}{3}\)
Ta có: `A` lớn nhất `<=> (2015)/(18+12|x-6|)` nhỏ nhất.
`<=> 18+12|x-6|` nhỏ nhất.
`<=> 12|x-6|` nhỏ nhất, do `18` là hằng.
`<=> 12|x-6|=0`
`<=> x=6 => A=2015/18`
Vậy...
`b, B>=x+1/3+1-x`
`=4/3`.
Đẳng thức xảy ra `<=> x+1/3=1-x`
`<=> x=2/3`.
Vậy...
\(A\ge0+2015=2015 \)
Dấu '=' xảy ra khi x=3/5
ta có : B=GTTĐ[(x-11)(x-14)]=GTTĐ(\(x^2-25x+154\))=GTTĐ[\(\left(x-\frac{5}{2}\right)^2-\frac{9}{4}\)]\(\ge-\frac{9}{4}\)
Dấu '=' xảy ra khi x=5/2