K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2018

  \(A=x^2+5y^2-4xy+2x-8y+202\)

    \(=x^2+4y^2+1-4xy-4y+2x+\left(y^2-4y+4\right)+197\)

    \(=\left(x-2y+1\right)^2+\left(y-2\right)^2+197\ge197\forall x;y\)

Dâu "=" xảy ra khi: 

\(\hept{\begin{cases}x-2y+1=0\\y-2=0\end{cases}\Rightarrow\hept{\begin{cases}x-4+1=0\\y=2\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

Vậy min A = 197 khi \(x=3,y=2\)

Chúc bạn học tốt.

ai tích mình mình tích lại cho

Có link câu này bạn tham khảo xem có được không nhé

https://h.vn/hoi-dap/question/535151.html

Học tốt nhé!

25 tháng 11 2017

\(x^2+5y^2-4x+2xy-8y+2022\\ =x^2+y^2+4y^2-4x+2xy-4y-4y+4+1+2017\\ =\left(x^2+2xy+y^2\right)-\left(4x+4y\right)+4+\left(4y^2-4y+1\right)+2017\\ =\left(x+y\right)^2-4\left(x+y\right)+4+\left(2y-1\right)^2+2017\\ =\left[\left(x+y\right)^2-4\left(x+y\right)+4\right]+\left(2y-1\right)^2+2017\\ =\left(x+y-2\right)^2+\left(2y-1\right)^2+2017\\ Do\text{ }\left(2y-1\right)^2\ge0\forall y\\ \left(x+y-2\right)^2\ge0\forall x;y\\ \Rightarrow\left(x+y-2\right)^2+\left(2y-1\right)^2\ge0\forall x;y\\ \Rightarrow\left(x+y-2\right)^2+\left(2y-1\right)^2+2017\ge2017\forall x;y\\ Dấu\text{ }"="\text{ }xảy\text{ }ra\text{ }khi:\left\{{}\begin{matrix}\left(2y-1\right)^2=0\\\left(x+y-2\right)^2=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2y-1=0\\x+y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2y=1\\x+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{2}\\x+\dfrac{1}{2}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\\ Vậy\text{ }GTNN\text{ }của\text{ }biểu\text{ }thức\text{ }là:\text{ }2017\text{ }khi\text{ }\left\{{}\begin{matrix}y=\dfrac{1}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\)