Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. $3x^2-9x=3x(x-3)$
b. $4x^2+7y-4xy-7x=(4x^2-4xy)-(7x-7y)=4x(x-y)-7(x-y)=(x-y)(4x-7)$
⇒ 4 x 2 - 7 x + 3 x 2 + 2 x + 1 = A x 2 - 1
⇒ 4 x 2 - 4 x - 3 x + 3 x + 1 2 = A x + 1 x - 1
⇒ 4 x x - 1 - 3 x - 1 . x + 1 2 = A . x + 1 x - 1
⇒ x - 1 4 x - 3 x + 1 2 = A x + 1 x - 1
⇒ A = 4 x - 3 x + 1 = 4 x 2 + 4 x - 3 x - 3 = 4 x 2 + x - 3
Vậy
\(A_{min}=8-\frac{25}{4}\) khi x=5/2
Bmin=xem lại đề đúng như đề Bmin=5 khi x=0
C=8+25-(2x+5)^2
Cmax=8+25 khi x=-5/2
Dmax=9 khi x=0
\(E=-4x^2+x+1\)
\(\Rightarrow E=-4\left(x^2-\dfrac{x}{4}\right)+1\)
\(\Rightarrow E=-4\left(x^2-\dfrac{x}{4}+\dfrac{1}{64}\right)+1+\dfrac{1}{16}\)
\(\Rightarrow E=-4\left(x-\dfrac{1}{8}\right)^2+\dfrac{17}{16}\)
mà \(-4\left(x-\dfrac{1}{8}\right)^2\le0,\forall x\)
\(\Rightarrow E=-4\left(x-\dfrac{1}{8}\right)^2+\dfrac{17}{16}\le\dfrac{17}{16}\)
\(\Rightarrow GTLN\left(E\right)=\dfrac{17}{16}\left(tạix=\dfrac{1}{8}\right)\)
\(F=5x-3x^2+6\)
\(\Rightarrow F=-3\left(x^2-\dfrac{5x}{3}\right)+6\)
\(\Rightarrow F=-3\left(x^2-\dfrac{5x}{3}+\dfrac{25}{36}\right)+6+\dfrac{25}{12}\)
\(\Rightarrow F=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{12}\)
mà \(-3\left(x-\dfrac{5}{6}\right)^2\le0,\forall x\)
\(\Rightarrow F=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{12}\le\dfrac{97}{12}\)
\(\Rightarrow GTLN\left(F\right)=\dfrac{97}{12}\left(tạix=\dfrac{5}{6}\right)\)
Cụ thể mức nào nhỉ tất cả dự trên HĐT \(\left(a+-b\right)^2=a^2+-2ab+b^2\)
cụ thể con A
\(A=x^2-2.\frac{5}{2}x+\left(\frac{5^2}{2^2}\right)+8-\frac{25}{4}\) đã thêm 25/4 =b vào phần đầu => trừ đi
\(A=\left(x-\frac{5}{2}\right)^2+8-\frac{25}{4}=\left(x-\frac{5}{2}\right)^2+\frac{7}{4}\)
\(\left(x-\frac{5}{2}\right)^2\ge0\Rightarrow A\ge\frac{7}{4}\)đẳng thức khi x-5/2=0=> x=5/2
A=(x-5/2)^2+8-25/4=> Amin=7/4 khi x=5/2
B --> xem lại theo đề Bmin =5 khi x=0
C =8+25-(2x+5)^2=> C max=32 khi x=-5/2
D max=9 khi x=0
a, 3x2 - 8x2 - 2x+3=0
2x(3-8) - 2x+3=0
2x5 - 2x+3=0
2x5 - 2x=0-3=
2x5 - 2x=-3
2x(5-x)=-3
5-x=-3/2
5-x=1,5
x=5-1,5
x=3,5
a) \(5x+10y=5\left(x+2y\right)\)
b) \(3x^3-12x=3x\left(x^2-4\right)=3x\left(x-2\right)\left(x+2\right)\)
c) \(4x^2+9x-4xy-9y=4x\left(x-y\right)+9\left(x-y\right)=\left(x-y\right)\left(4x+9\right)\)
d) \(3x^2+5y-3xy-5x=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)
\(C=-4x^2+9x+7=-\left[\left(2x\right)^2-9x-7\right]\)
\(=-\left[\left(2x\right)^2-2.2,25x+5,0625-12,0625\right]\)
\(=-\left[\left(2x-2,25\right)^2-12,065\right]=-\left(2x-2,25\right)^2+12,0625\)
Ta có: \(\left(2x-2,25\right)^2\ge0\)\(\Leftrightarrow-\left(2x-2,25\right)^2\le0\)\(\Leftrightarrow-\left(2x-2,25\right)^2+12,0625\le12,0625\)
Vậy \(C_{max}=12,0625\)(Dấu "="\(\Leftrightarrow x=1,125\))
C= -4x2 +9x+7
Giải phương trình trên máy tính rồi ấn 3 lần dấu ' = ' để tìm GTLN
KQ : Max C = \(\frac{9}{8}\)
D=-3x2-7x+12
Giải phương trình trên máy tính rồi ấn 3 lần dấu ' = ' để tìm GTLN
Max D = \(-\frac{7}{6}\)
Không có Min đâu nhé bạn