Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a) \(A=5x^2-6x-1\)
\(\Rightarrow A=5\left(x^2-\frac{6}{5}x-\frac{1}{5}\right)\)
\(\Rightarrow A=5\left(x^2-2\cdot x\cdot\frac{6}{10}+\frac{36}{100}-\frac{14}{25}\right)\)
\(\Rightarrow A=5\left[\left(x-\frac{6}{10}\right)^2-\frac{14}{25}\right]\)
\(\Rightarrow A=5\left(x-\frac{6}{10}\right)^2-\frac{14}{5}\)
Vì \(\left(x-\frac{6}{10}\right)^2\ge0\forall x\)\(\Rightarrow A=5\left(x-\frac{6}{10}\right)^2-\frac{14}{5}\ge-\frac{14}{5}\forall x\)
\(A=-\frac{14}{5}\Leftrightarrow\left(x-\frac{6}{10}\right)^2=0\Leftrightarrow x=\frac{6}{10}\)
Vậy \(MinA=-\frac{14}{5}\Leftrightarrow x=\frac{6}{10}\)
\(x^2+y^2+2xy+4x+4y\)
\(=\left(x+y\right)^2+4\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y+4\right)\)
a) -x2 + 6x - 7 = -( x2 - 6x + 9 ) + 2 = -( x - 3 )2 + 2
-( x - 3 )2 ≤ 0 ∀ x => -( x - 3 )2 + 2 ≤ +2
Đẳng thức xảy ra <=> x - 3 = 0 => x = 3
Vậy GTLN của biểu thức = 2 <=> x = 3
b) 4x2 - 8x + 5 = 4( x2 - 2x + 1 ) + 1 = 4( x - 1 )2 + 1
4( x - 1 )2 ≥ 0 ∀ x => 4( x - 1 )2 + 1 ≥ 1
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
Vậy GTNN của biểu thức = 1 <=> x = 1
c) 7 - x2
-x2 ≤ 0 ∀ x => 7 - x2 ≤ 7
Đẳng thức xảy ra <=> x = 0
Vậy GTLN của biểu thức = 7 <=> x = 0
a. \(-x^2+6x-7=-\left(x-3\right)^2+2\)
Vì \(\left(x-3\right)^2\ge0\forall x\)\(\Rightarrow-\left(x-3\right)^2+2\le2\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy GTLN của bt trên = 2 <=> x = 3
b. \(4x^2-8x+5=4\left(x-1\right)^2+1\)
Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow4\left(x-1\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow4\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy GTNN của bt trên = 1 <=> x = 1
c. \(7-x^2=-\left(x\right)^2+7\)
Vì \(\left(x\right)^2\ge0\forall x\)\(\Rightarrow-\left(x\right)^2+7\le7\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x\right)^2=0\Leftrightarrow x=0\)
Vậy GTLN của bt trên = 7 <=> x = 0
nbbbbbnbnbb
Max = vô cùng
Min = 5 (theo mình là vậy)