Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
" m " ở đâu vậy bạn ,sửa đề câu b) : Tìm x để P =\(A-9\sqrt{x}\)
Bài giải
a) ĐKXĐ: \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)
A = \(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
= \(\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right).\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
= \(\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
= \(\frac{\sqrt{x}-1}{\sqrt{x}}\)
Vậy A = \(\frac{\sqrt{x}-1}{\sqrt{x}}\)với x > 0 ; x \(\ne1\)
b) P = A - \(9\sqrt{x}=\frac{\sqrt{x}-1}{\sqrt{x}}-9\sqrt{x}=1-\left(\frac{1}{\sqrt{x}}+9\sqrt{x}\right)\)
Áp dụng BĐT Côsi : \(\frac{1}{\sqrt{x}}+9\sqrt{x}\ge2.3=6\)
Dấu "=" xảy ra khi \(\frac{1}{\sqrt{x}}=9\sqrt{x}\Leftrightarrow1=9x\Leftrightarrow x=\frac{1}{9}\)
=> P \(\ge-5\).Vậy Max P = -5 khi x = \(\frac{1}{9}\)
ĐKXĐ: \(x\ge0\). Ta có:
\(P=\frac{\sqrt{x}-1}{\sqrt{x}}-9\sqrt{x}=1-\frac{1}{\sqrt{x}}-9\sqrt{x}=1-\left(\frac{1}{\sqrt{x}}+9\sqrt{x}\right)\)
Để P đạt GTLN thì \(\frac{1}{\sqrt{x}}+9\sqrt{x}\) đạt GTNN. Áp dụng BĐT Cô-si ta có:
\(\frac{1}{\sqrt{x}}+9\sqrt{x}\ge2\sqrt{\frac{1}{\sqrt{x}}.9\sqrt{x}}=6\Rightarrow P\le1-6=-5\)
Xảy ra đẳng thức khi và chỉ khi \(\frac{1}{\sqrt{x}}=9\sqrt{x}\Leftrightarrow9x=1\Leftrightarrow x=\frac{1}{9}\) (thỏa mãn)
Vậy max P = -5 khi và chỉ khi x = 1/9
\(P=1-\frac{1}{\sqrt{x}}-9\sqrt{x}=1-\left(\frac{1}{\sqrt{x}}+9\sqrt{x}\right)\le1-2\sqrt{\frac{1}{\sqrt{x}}\cdot9\sqrt{x}}=1-6=-5\)
Vậy MAx P = -5 tại x = 1/9