K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2019

\(2x^2+2\left(2m-6\right)x-6m+52=0\)

\(\Delta=4\left(2m-6\right)^2+2.\left(6m-52\right)=4.\left(4m^2-2m+36\right)+12m-104=16m^2-8m+144+12m-104=16m^2+4m+40>0\)

Vậy pt luôn có nghiệm hữu tỉ

16 tháng 5 2021

1) điều kiện của m: m khác 5/2

thế x=2 vào pt1 ta đc:

(2m-5)*4 - 4(m-1)+3=0 <=> 8m-20-4m+4+3=0<=> 4m = 13 <=> m=13/4 (nhận)

lập △'=[-(m-1)]2-*(2m-5)*3 = (m-4)2

vì (m-4)2 ≥ 0 nên phương trình có nghiệm kép => x1= x2 =2

3) vì △'≥0 với mọi m nên phương trình đã cho có nghiệm với mọi m

 

 

b: Thay x=-5 vào pt, ta được:

\(m+25+65=0\)

hay m=-90

Theo đề, ta có: \(x_1+x_2=13\)

nên \(x_2=18\)

c: Thay x=-3 vào pt, ta được:

\(18+3\left(m+4\right)+m=0\)

=>4m+30=0

hay m=-15/2

Theo đề, ta có: \(x_1\cdot x_2=-\dfrac{m}{2}=\dfrac{15}{4}\)

hay \(x_2=-1.25\)

29 tháng 10 2023

a: Khi m=1 thì phương trình sẽ là:

\(x^2-2x+1-1=0\)

=>x^2-2x=0

=>x(x-2)=0

=>x=0 hoặc x=2

b: \(\text{Δ}=\left(-2\right)^2-4\left(m-1\right)=4-4m+4=-4m+8\)

Để phương trình có 2 nghiệm thì -4m+8>=0

=>-4m>=-8

=>m<=2

\(x_1^3+x_2^3< =15\)

=>\(\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)< =15\)

=>\(2^3-3\cdot2\cdot\left(m-1\right)< =15\)

=>\(8-6m+6< =15\)

=>-6m+14<=15

=>-6m<=1

=>\(m>=-\dfrac{1}{6}\)

=>\(-\dfrac{1}{6}< =m< =2\)

a: Khi x=-2 thì pt sẽ là;

4+4+m-2=0

=>m+6=0

=>m=-6

=>x^2-2x-8=0

=>(x-4)(x+2)=0

=>x=4 hoặc x=-2

b: 1/x1+1/x2=2

=>(x1+x2)/(x1x2)=2

=>2/(m-2)=2

=>m-2=1

=>m=3