K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 6 2022

Lời giải:

Bổ sung đk $m$ nguyên
Để pt có 2 nghiệm nguyên thì:

\(\Delta=m^2-4(m+2)=t^2\) với $t\in\mathbb{N}^*$

$\Leftrightarrow m^2-4m-8=t^2$

$\Leftrightarrow (m-2)^2-12=t^2$
$\Leftrightarrow 12=(m-2)^2-t^2=(m-2-t)(m-2+t)$

Vì $m-2-t, m-2+t$ có cùng tính chẵn lẻ nên $(m-2-t, m-2+t)=(2,6), (6,2), (-2,-6), (-6,-2)$

$\Rightarrow m=-2$ hoặc $m=6$

Thử lại thấy tm

25 tháng 3 2022

Xét pt đã cho có \(\Delta=m^2-4.1.\left(-m-1\right)=m^2+4m+4=\left(m+2\right)^2\ge0\)với mọi \(m\inℝ\)

Vậy pt đã cho luôn có 2 nghiệm với mọi \(m\inℝ\)

Theo định lí Vi-ét, ta có \(\hept{\begin{cases}x_1+x_2=-\frac{-m}{1}=m\\x_1x_2=\frac{-m-1}{1}=-m-1\end{cases}}\)

Lại có \(\left|x_1-x_2\right|\ge3\)\(\Leftrightarrow\left(x_1-x_2\right)^2\ge9\)(vì cả 2 vế của BĐT đầu đều lớn hơn 0)

 \(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2\ge9\)\(\Leftrightarrow m^2-4\left(-m-1\right)\ge9\)\(\Leftrightarrow m^2+4m+4\ge9\)\(\Leftrightarrow\left(m+2\right)^2\ge9\)\(\Leftrightarrow\orbr{\begin{cases}m+2\ge3\\m+2\le-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}m\ge1\\m\le-5\end{cases}}\)

Vậy các giá trị của m để pt có 2 nghiệm x1, x2 thỏa mãn \(\left|x_1-x_2\right|\ge3\)là \(\orbr{\begin{cases}m\ge1\\m\le-5\end{cases}}\)

19 tháng 5 2015
theo de bai a=8 hay x,^2+x,,^2-6x,x,, =8 <=>(x,+x,,)^2-8x,x,,=8 (*) theo vi-et : S= m;P=m-1 thay vao pt (*) dc m^2-8m+8=8 <=>m^2-8m=0 <=>m(m-8)=0 <=>m=0 hoacm=8 dung k...x, la x1;x,,la x2 theo
28 tháng 9 2016

\(x^3+2\left(M-1\right)x^2+\left(M-2\right)x-3M+3=0\)

\(\Leftrightarrow\left(x^3-x^2\right)+\left(\left(2M-1\right)x^2-\left(2M-1\right)x\right)+\left(\left(3M-3\right)x-\left(3M-3\right)\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+\left(2M-1\right)x+3M-3\right)=0\)

Tới đây thì bài toán đơn giản rồi nên bạn làm tiếp đi 

2 tháng 3 2018

Sử dụng định lí Vi-ét:

\(\frac{2}{x_1}+\frac{2}{x_2}=3\Leftrightarrow\frac{2\left(x_1+x_2\right)}{x_1.x_2}=3\)(*)

Tính ∆' tìm điều kiện của m để phương trình có 2 nghiệm phân biệt.

Sau đó bạn viết định lí Vi-ét và áp dụng và (*) 

Kết hợp cả hai điều kiện lại là ra kết quả đúng.

4 tháng 3 2018

Cảm ơn ạ